跨集群的恶意软件检测

Manjushree C V, A. Nandakumar
{"title":"跨集群的恶意软件检测","authors":"Manjushree C V, A. Nandakumar","doi":"10.1109/IITCEE57236.2023.10090979","DOIUrl":null,"url":null,"abstract":"Due to diverse software vulnerabilities and hardware attacks, user credentials are vulnerable or could land in demilitarized zones. An attempt is made to explore and finally proposed a trust based malware detection based on optimal data classification. An improved glowworm swarm optimization (IGWSO) algorithm is proposed for clustering in the input dataset into different groups. After clustering, recurrent deep neural network based computation is used for deriving different trust levels for cloud information that classify the suspected intrusion. The proposed TMD system implemented in java with cloudsim tool evidently discovers the effectiveness of the algorithm over existing state of art systems on the parameters of high detection, precision, recall and F-measures.","PeriodicalId":124653,"journal":{"name":"2023 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Malware Detection across Clusters\",\"authors\":\"Manjushree C V, A. Nandakumar\",\"doi\":\"10.1109/IITCEE57236.2023.10090979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to diverse software vulnerabilities and hardware attacks, user credentials are vulnerable or could land in demilitarized zones. An attempt is made to explore and finally proposed a trust based malware detection based on optimal data classification. An improved glowworm swarm optimization (IGWSO) algorithm is proposed for clustering in the input dataset into different groups. After clustering, recurrent deep neural network based computation is used for deriving different trust levels for cloud information that classify the suspected intrusion. The proposed TMD system implemented in java with cloudsim tool evidently discovers the effectiveness of the algorithm over existing state of art systems on the parameters of high detection, precision, recall and F-measures.\",\"PeriodicalId\":124653,\"journal\":{\"name\":\"2023 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IITCEE57236.2023.10090979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITCEE57236.2023.10090979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于各种各样的软件漏洞和硬件攻击,用户凭证容易受到攻击,或者可能落在非军事区。最后提出了一种基于最优数据分类的基于信任的恶意软件检测方法。提出了一种改进的萤火虫群优化算法(IGWSO),用于将输入数据集聚类成不同的组。聚类后,基于递归深度神经网络的计算得到云信息的不同信任级别,对可疑入侵进行分类。利用cloudsim工具在java上实现了TMD系统,结果表明该算法在高检测率、高精度、召回率和f -测度等参数上优于现有系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Malware Detection across Clusters
Due to diverse software vulnerabilities and hardware attacks, user credentials are vulnerable or could land in demilitarized zones. An attempt is made to explore and finally proposed a trust based malware detection based on optimal data classification. An improved glowworm swarm optimization (IGWSO) algorithm is proposed for clustering in the input dataset into different groups. After clustering, recurrent deep neural network based computation is used for deriving different trust levels for cloud information that classify the suspected intrusion. The proposed TMD system implemented in java with cloudsim tool evidently discovers the effectiveness of the algorithm over existing state of art systems on the parameters of high detection, precision, recall and F-measures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信