{"title":"基于递归主成分分析的电厂故障监测","authors":"Alberto Sánchez, Mauricio Redrobán, Omar Aguirre","doi":"10.1109/ROPEC.2016.7830609","DOIUrl":null,"url":null,"abstract":"Recursive Principal Components Analysis is explored as a method to identify and classify fault sources in a 12MW steam dual fuel power plant. The algorithm assessment is performed off-line by using data of relevant plant wide-information. A simple contributions matrix based in normalized data is proposed to diagnose plant faults. Results indicate it is possible to detect, classify and possibly even predict sources of plant failure.","PeriodicalId":166098,"journal":{"name":"2016 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power plant fault monitoring using Recursive Principal Component Analysis RPCA\",\"authors\":\"Alberto Sánchez, Mauricio Redrobán, Omar Aguirre\",\"doi\":\"10.1109/ROPEC.2016.7830609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recursive Principal Components Analysis is explored as a method to identify and classify fault sources in a 12MW steam dual fuel power plant. The algorithm assessment is performed off-line by using data of relevant plant wide-information. A simple contributions matrix based in normalized data is proposed to diagnose plant faults. Results indicate it is possible to detect, classify and possibly even predict sources of plant failure.\",\"PeriodicalId\":166098,\"journal\":{\"name\":\"2016 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROPEC.2016.7830609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROPEC.2016.7830609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Power plant fault monitoring using Recursive Principal Component Analysis RPCA
Recursive Principal Components Analysis is explored as a method to identify and classify fault sources in a 12MW steam dual fuel power plant. The algorithm assessment is performed off-line by using data of relevant plant wide-information. A simple contributions matrix based in normalized data is proposed to diagnose plant faults. Results indicate it is possible to detect, classify and possibly even predict sources of plant failure.