关于奇完全数的欧拉形式

Balchandar Reddy Sangam
{"title":"关于奇完全数的欧拉形式","authors":"Balchandar Reddy Sangam","doi":"10.22457/apam.v22n1a07685","DOIUrl":null,"url":null,"abstract":"Euler has proved that an odd perfect number, if exists, must be of the form ... , ≡ ≡ 1 (mod 4). In this article, we show: (i) An alternative proof to the Euler’s form of odd perfect numbers. (ii) An odd number of the form: , ≡ ≡ 1 (mod 4) cannot be perfect.","PeriodicalId":305863,"journal":{"name":"Annals of Pure and Applied Mathematics","volume":"164 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Euler’s Form of an odd Perfect Number\",\"authors\":\"Balchandar Reddy Sangam\",\"doi\":\"10.22457/apam.v22n1a07685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Euler has proved that an odd perfect number, if exists, must be of the form ... , ≡ ≡ 1 (mod 4). In this article, we show: (i) An alternative proof to the Euler’s form of odd perfect numbers. (ii) An odd number of the form: , ≡ ≡ 1 (mod 4) cannot be perfect.\",\"PeriodicalId\":305863,\"journal\":{\"name\":\"Annals of Pure and Applied Mathematics\",\"volume\":\"164 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22457/apam.v22n1a07685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22457/apam.v22n1a07685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

欧拉证明了奇完全数,如果存在,它的形式必须是…,≡≡1 (mod 4)。在本文中,我们证明:(i)奇完全数欧拉形式的另一种证明。(ii)形式为:,≡≡1 (mod 4)的奇数不可能是完全数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Euler’s Form of an odd Perfect Number
Euler has proved that an odd perfect number, if exists, must be of the form ... , ≡ ≡ 1 (mod 4). In this article, we show: (i) An alternative proof to the Euler’s form of odd perfect numbers. (ii) An odd number of the form: , ≡ ≡ 1 (mod 4) cannot be perfect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信