基于知识约束的最大广义频繁地理模式挖掘

V. Bogorny, J. Valiati, S. D. S. Camargo, P. Engel, B. Kuijpers, L. Alvares
{"title":"基于知识约束的最大广义频繁地理模式挖掘","authors":"V. Bogorny, J. Valiati, S. D. S. Camargo, P. Engel, B. Kuijpers, L. Alvares","doi":"10.1109/ICDM.2006.110","DOIUrl":null,"url":null,"abstract":"In frequent geographic pattern mining a large amount of patterns is well known a priori. This paper presents a novel approach for mining frequent geographic patterns without associations that are previously known as non- interesting. Geographic dependences are eliminated during the frequent set generation using prior knowledge. After the dependence elimination maximal generalized frequent sets are computed to remove redundant frequent sets. Experimental results show a significant reduction of both the number of frequent sets and the computational time for mining maximal frequent geographic patterns.","PeriodicalId":356443,"journal":{"name":"Sixth International Conference on Data Mining (ICDM'06)","volume":"195 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Mining Maximal Generalized Frequent Geographic Patterns with Knowledge Constraints\",\"authors\":\"V. Bogorny, J. Valiati, S. D. S. Camargo, P. Engel, B. Kuijpers, L. Alvares\",\"doi\":\"10.1109/ICDM.2006.110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In frequent geographic pattern mining a large amount of patterns is well known a priori. This paper presents a novel approach for mining frequent geographic patterns without associations that are previously known as non- interesting. Geographic dependences are eliminated during the frequent set generation using prior knowledge. After the dependence elimination maximal generalized frequent sets are computed to remove redundant frequent sets. Experimental results show a significant reduction of both the number of frequent sets and the computational time for mining maximal frequent geographic patterns.\",\"PeriodicalId\":356443,\"journal\":{\"name\":\"Sixth International Conference on Data Mining (ICDM'06)\",\"volume\":\"195 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Data Mining (ICDM'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2006.110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Data Mining (ICDM'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2006.110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

在频繁的地理模式挖掘中,大量的模式是众所周知的先验。本文提出了一种新的方法来挖掘频繁的地理模式,而不涉及以前被称为无兴趣的关联。在使用先验知识的频繁集生成过程中消除了地理依赖性。在相关性消除后,计算最大广义频率集,去除冗余频率集。实验结果表明,该方法显著减少了挖掘最大频繁地理模式的频繁集数量和计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining Maximal Generalized Frequent Geographic Patterns with Knowledge Constraints
In frequent geographic pattern mining a large amount of patterns is well known a priori. This paper presents a novel approach for mining frequent geographic patterns without associations that are previously known as non- interesting. Geographic dependences are eliminated during the frequent set generation using prior knowledge. After the dependence elimination maximal generalized frequent sets are computed to remove redundant frequent sets. Experimental results show a significant reduction of both the number of frequent sets and the computational time for mining maximal frequent geographic patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信