{"title":"基于Valiant负载均衡的容错网络设计","authors":"Rui Zhang-Shen, N. McKeown","doi":"10.1109/INFOCOM.2008.305","DOIUrl":null,"url":null,"abstract":"Commercial backbone networks must continue to operate even when links and routers fail. Routing schemes such as OSPF, IS-IS, and MPLS reroute traffic, but they cannot guarantee that the resulting network will be congestion-free. As a result, backbone networks are grossly over-provisioned - sometimes running at a utilization below 10% so they can remain uncongested under failure. Yet even with such large over-provisioning, they still cannot guarantee to be uncongested, sometimes even with just a single failure. With our proposed approach, a network can be designed to tolerate an almost arbitrary number of failures, and guarantee no congestion, usually with an extremely small amount of over- provisioning. In a typical case, a 50 node network can continue to run congestion-free when any 5 links or routers fail, with only 10% over-provisioning. The key to the approach is Valiant Load-Balancing (VLB). VLB's path diversity allows it to tolerate k arbitrary failures in an N node network, with over-provisioning ratio of approximately k/N.","PeriodicalId":447520,"journal":{"name":"IEEE INFOCOM 2008 - The 27th Conference on Computer Communications","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"Designing a Fault-Tolerant Network Using Valiant Load-Balancing\",\"authors\":\"Rui Zhang-Shen, N. McKeown\",\"doi\":\"10.1109/INFOCOM.2008.305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Commercial backbone networks must continue to operate even when links and routers fail. Routing schemes such as OSPF, IS-IS, and MPLS reroute traffic, but they cannot guarantee that the resulting network will be congestion-free. As a result, backbone networks are grossly over-provisioned - sometimes running at a utilization below 10% so they can remain uncongested under failure. Yet even with such large over-provisioning, they still cannot guarantee to be uncongested, sometimes even with just a single failure. With our proposed approach, a network can be designed to tolerate an almost arbitrary number of failures, and guarantee no congestion, usually with an extremely small amount of over- provisioning. In a typical case, a 50 node network can continue to run congestion-free when any 5 links or routers fail, with only 10% over-provisioning. The key to the approach is Valiant Load-Balancing (VLB). VLB's path diversity allows it to tolerate k arbitrary failures in an N node network, with over-provisioning ratio of approximately k/N.\",\"PeriodicalId\":447520,\"journal\":{\"name\":\"IEEE INFOCOM 2008 - The 27th Conference on Computer Communications\",\"volume\":\"199 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE INFOCOM 2008 - The 27th Conference on Computer Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INFOCOM.2008.305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2008 - The 27th Conference on Computer Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOM.2008.305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Designing a Fault-Tolerant Network Using Valiant Load-Balancing
Commercial backbone networks must continue to operate even when links and routers fail. Routing schemes such as OSPF, IS-IS, and MPLS reroute traffic, but they cannot guarantee that the resulting network will be congestion-free. As a result, backbone networks are grossly over-provisioned - sometimes running at a utilization below 10% so they can remain uncongested under failure. Yet even with such large over-provisioning, they still cannot guarantee to be uncongested, sometimes even with just a single failure. With our proposed approach, a network can be designed to tolerate an almost arbitrary number of failures, and guarantee no congestion, usually with an extremely small amount of over- provisioning. In a typical case, a 50 node network can continue to run congestion-free when any 5 links or routers fail, with only 10% over-provisioning. The key to the approach is Valiant Load-Balancing (VLB). VLB's path diversity allows it to tolerate k arbitrary failures in an N node network, with over-provisioning ratio of approximately k/N.