{"title":"时变外磁场中的多能级自旋动力学","authors":"P. Földi, M. Benedict, F. Peeters","doi":"10.1556/APH.26.2006.1-2.7","DOIUrl":null,"url":null,"abstract":"We investigate the dynamics of a ‘giant spin’ with 21 levels (S=10) in time dependent external magnetic field. The model can describe the time evolution of the spin degree of freedom in molecular nanomagnets, and our ‘exact numerical’ treatment of the problem reflects the staircase-like behavior of the experimentally observed magnetization curves. This effect is explained in terms of the level structure, which, at certain values of the external magnetic field, exhibits avoided crossings where the probability of the transitions increases. We show that the multilevel nature of the problem causes these transition probabilities to deviate significantly from the predictions of the traditional Landau-Zener-Stückelberg model.","PeriodicalId":150867,"journal":{"name":"Acta Physica Hungarica B) Quantum Electronics","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multilevel spin dynamics in time-dependent external magnetic field\",\"authors\":\"P. Földi, M. Benedict, F. Peeters\",\"doi\":\"10.1556/APH.26.2006.1-2.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the dynamics of a ‘giant spin’ with 21 levels (S=10) in time dependent external magnetic field. The model can describe the time evolution of the spin degree of freedom in molecular nanomagnets, and our ‘exact numerical’ treatment of the problem reflects the staircase-like behavior of the experimentally observed magnetization curves. This effect is explained in terms of the level structure, which, at certain values of the external magnetic field, exhibits avoided crossings where the probability of the transitions increases. We show that the multilevel nature of the problem causes these transition probabilities to deviate significantly from the predictions of the traditional Landau-Zener-Stückelberg model.\",\"PeriodicalId\":150867,\"journal\":{\"name\":\"Acta Physica Hungarica B) Quantum Electronics\",\"volume\":\"199 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Physica Hungarica B) Quantum Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/APH.26.2006.1-2.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physica Hungarica B) Quantum Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/APH.26.2006.1-2.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了具有21能级(S=10)的“巨自旋”在随时间变化的外磁场中的动力学。该模型可以描述分子纳米磁体中自旋自由度的时间演化,我们对该问题的“精确数值”处理反映了实验观察到的阶梯状磁化曲线的行为。这种效应是用能级结构来解释的,在一定的外部磁场值下,表现出避免的交叉,其中跃迁的概率增加。我们表明,问题的多层次性质导致这些转移概率显著偏离传统的landau - zener - st ckelberg模型的预测。
Multilevel spin dynamics in time-dependent external magnetic field
We investigate the dynamics of a ‘giant spin’ with 21 levels (S=10) in time dependent external magnetic field. The model can describe the time evolution of the spin degree of freedom in molecular nanomagnets, and our ‘exact numerical’ treatment of the problem reflects the staircase-like behavior of the experimentally observed magnetization curves. This effect is explained in terms of the level structure, which, at certain values of the external magnetic field, exhibits avoided crossings where the probability of the transitions increases. We show that the multilevel nature of the problem causes these transition probabilities to deviate significantly from the predictions of the traditional Landau-Zener-Stückelberg model.