从财务文件中提取知识图谱:扩展摘要

J. Pujara
{"title":"从财务文件中提取知识图谱:扩展摘要","authors":"J. Pujara","doi":"10.1145/3077240.3077246","DOIUrl":null,"url":null,"abstract":"Textual corpora, such as financial documents, contain a wealth of knowledge. Recently, knowledge graphs have become a popular approach to capturing structured knowledge of entities and their interrelationships. In this paper, we evaluate open information extraction (IE) and knowledge graph construction techniques for assessing the relevance of textual segments in the Financial Entity Identification and Information Integration Challenge. Our approach is to extract several textual signals, including topics and open IE triples, and combine these in a probabilistic framework to predict the relevance of each potential relationship.","PeriodicalId":326424,"journal":{"name":"Proceedings of the 3rd International Workshop on Data Science for Macro--Modeling with Financial and Economic Datasets","volume":"290 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Extracting Knowledge Graphs from Financial Filings: Extended Abstract\",\"authors\":\"J. Pujara\",\"doi\":\"10.1145/3077240.3077246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Textual corpora, such as financial documents, contain a wealth of knowledge. Recently, knowledge graphs have become a popular approach to capturing structured knowledge of entities and their interrelationships. In this paper, we evaluate open information extraction (IE) and knowledge graph construction techniques for assessing the relevance of textual segments in the Financial Entity Identification and Information Integration Challenge. Our approach is to extract several textual signals, including topics and open IE triples, and combine these in a probabilistic framework to predict the relevance of each potential relationship.\",\"PeriodicalId\":326424,\"journal\":{\"name\":\"Proceedings of the 3rd International Workshop on Data Science for Macro--Modeling with Financial and Economic Datasets\",\"volume\":\"290 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Workshop on Data Science for Macro--Modeling with Financial and Economic Datasets\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3077240.3077246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Workshop on Data Science for Macro--Modeling with Financial and Economic Datasets","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3077240.3077246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

文本语料库,如财务文件,包含了丰富的知识。最近,知识图已经成为一种流行的方法来获取实体及其相互关系的结构化知识。在本文中,我们评估了开放信息提取(IE)和知识图谱构建技术,用于评估金融实体识别和信息集成挑战中文本片段的相关性。我们的方法是提取几个文本信号,包括主题和开放的IE三元组,并将它们组合在一个概率框架中,以预测每个潜在关系的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extracting Knowledge Graphs from Financial Filings: Extended Abstract
Textual corpora, such as financial documents, contain a wealth of knowledge. Recently, knowledge graphs have become a popular approach to capturing structured knowledge of entities and their interrelationships. In this paper, we evaluate open information extraction (IE) and knowledge graph construction techniques for assessing the relevance of textual segments in the Financial Entity Identification and Information Integration Challenge. Our approach is to extract several textual signals, including topics and open IE triples, and combine these in a probabilistic framework to predict the relevance of each potential relationship.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信