{"title":"基于三维光学和电学建模的光捕获纳米图案太阳能电池设计","authors":"H. Hsiao, Hung-chun Chang, Yuh‐Renn Wu","doi":"10.1109/NUSOD.2014.6935404","DOIUrl":null,"url":null,"abstract":"The optical and electrical properties of a new type photonic-plasmonic nanostructure on the back contact of solar cells were investigated numerically through the three-dimensional (3D) finite-difference time-domain (FDTD) method and the Poisson and drift-diffusion (DDCC) solver. The focusing effect and the Fabry-Perot resonances are identified as the main mechanisms for the enhancement of the optical generation rate as well as the short circuit current density. In addition, the surface topography of the nanopattern has a strong effect on the device physics such as the potential and recombination profiles, and therefore influencing the electrode collecting efficiency of the photocurrents.","PeriodicalId":114800,"journal":{"name":"Numerical Simulation of Optoelectronic Devices, 2014","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of light trapping nanopatterned solar cells based on three-dimensional optical and electrical modeling\",\"authors\":\"H. Hsiao, Hung-chun Chang, Yuh‐Renn Wu\",\"doi\":\"10.1109/NUSOD.2014.6935404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optical and electrical properties of a new type photonic-plasmonic nanostructure on the back contact of solar cells were investigated numerically through the three-dimensional (3D) finite-difference time-domain (FDTD) method and the Poisson and drift-diffusion (DDCC) solver. The focusing effect and the Fabry-Perot resonances are identified as the main mechanisms for the enhancement of the optical generation rate as well as the short circuit current density. In addition, the surface topography of the nanopattern has a strong effect on the device physics such as the potential and recombination profiles, and therefore influencing the electrode collecting efficiency of the photocurrents.\",\"PeriodicalId\":114800,\"journal\":{\"name\":\"Numerical Simulation of Optoelectronic Devices, 2014\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Simulation of Optoelectronic Devices, 2014\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NUSOD.2014.6935404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Simulation of Optoelectronic Devices, 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NUSOD.2014.6935404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of light trapping nanopatterned solar cells based on three-dimensional optical and electrical modeling
The optical and electrical properties of a new type photonic-plasmonic nanostructure on the back contact of solar cells were investigated numerically through the three-dimensional (3D) finite-difference time-domain (FDTD) method and the Poisson and drift-diffusion (DDCC) solver. The focusing effect and the Fabry-Perot resonances are identified as the main mechanisms for the enhancement of the optical generation rate as well as the short circuit current density. In addition, the surface topography of the nanopattern has a strong effect on the device physics such as the potential and recombination profiles, and therefore influencing the electrode collecting efficiency of the photocurrents.