基于上下文域关联的小样本生物医学命名实体识别

Shun Zhang, Shaofu Lin, Jiangfan Gao, Jianhui Chen
{"title":"基于上下文域关联的小样本生物医学命名实体识别","authors":"Shun Zhang, Shaofu Lin, Jiangfan Gao, Jianhui Chen","doi":"10.1109/ITNEC.2019.8729015","DOIUrl":null,"url":null,"abstract":"Existing named entity recognition methods are often based on large training samples and cannot effectively recognize fine-grained domain entities with small sample sizes In order to solve this problem, this paper proposes an unsupervised method based on contextual domain relevance for recognizing biomedical named entities with small sample sizes. Based on the distributed semantic model, the statistical and linguistic features of candidate entities in corpora are described by using occurrence frequencies of contexts of candidate entities. Furthermore, the entity-corpus relevance assumption, the log-likelihood ratio and the domain-dependent function are adopted for recognizing objective entities. Experimental results show that, the proposed method can effectively reduce manual interventions and improve the precision rate and recall rate of small-sample biomedical named entity recognition.","PeriodicalId":202966,"journal":{"name":"2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Recognizing Small-Sample Biomedical Named Entity Based on Contextual Domain Relevance\",\"authors\":\"Shun Zhang, Shaofu Lin, Jiangfan Gao, Jianhui Chen\",\"doi\":\"10.1109/ITNEC.2019.8729015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing named entity recognition methods are often based on large training samples and cannot effectively recognize fine-grained domain entities with small sample sizes In order to solve this problem, this paper proposes an unsupervised method based on contextual domain relevance for recognizing biomedical named entities with small sample sizes. Based on the distributed semantic model, the statistical and linguistic features of candidate entities in corpora are described by using occurrence frequencies of contexts of candidate entities. Furthermore, the entity-corpus relevance assumption, the log-likelihood ratio and the domain-dependent function are adopted for recognizing objective entities. Experimental results show that, the proposed method can effectively reduce manual interventions and improve the precision rate and recall rate of small-sample biomedical named entity recognition.\",\"PeriodicalId\":202966,\"journal\":{\"name\":\"2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITNEC.2019.8729015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNEC.2019.8729015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

现有的命名实体识别方法往往基于大样本训练,不能有效识别小样本细粒度的领域实体。为了解决这一问题,本文提出了一种基于上下文域关联的无监督方法,用于小样本生物医学命名实体的识别。在分布式语义模型的基础上,利用候选实体上下文的出现频率来描述语料库中候选实体的统计和语言特征。在此基础上,采用实体-语料库关联假设、对数似然比和领域相关函数对目标实体进行识别。实验结果表明,该方法可以有效减少人工干预,提高小样本生物医学命名实体识别的准确率和召回率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognizing Small-Sample Biomedical Named Entity Based on Contextual Domain Relevance
Existing named entity recognition methods are often based on large training samples and cannot effectively recognize fine-grained domain entities with small sample sizes In order to solve this problem, this paper proposes an unsupervised method based on contextual domain relevance for recognizing biomedical named entities with small sample sizes. Based on the distributed semantic model, the statistical and linguistic features of candidate entities in corpora are described by using occurrence frequencies of contexts of candidate entities. Furthermore, the entity-corpus relevance assumption, the log-likelihood ratio and the domain-dependent function are adopted for recognizing objective entities. Experimental results show that, the proposed method can effectively reduce manual interventions and improve the precision rate and recall rate of small-sample biomedical named entity recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信