{"title":"第一届大数据分析情景感知推荐系统国际研讨会(CARS-BDA)","authors":"Xiangmin Zhou, Ji Zhang, Yanchun Zhang","doi":"10.1145/3289600.3291372","DOIUrl":null,"url":null,"abstract":"With the explosive growth of online service platforms, increasing number of people and enterprises are doing everything online. In order for organizations, governments, and individuals to understand their users, and promote their products or services, it is necessary for them to analyse big data and recommend the media or online services in real time. Effective recommendation of items of interest to consumers has become critical for enterprises in domains such as retail, e-commerce, and online media. Driven by the business successes, academic research in this field has also been active for many years. Through many scientific breakthroughs have been achieved, there are still tremendous challenges in developing effective and scalable recommendation systems for real-world industrial applications. Existing solutions focus on recommending items based on pre-set contexts, such as time, location, weather etc. The big data sizes and complex contextual information add further challenges to the deployment of advanced recommender systems. This workshop aims to bring together researchers with wide-ranging backgrounds to identify important research questions, to exchange ideas from different research disciplines, and, more generally, to facilitate discussion and innovation in the area of context-aware recommender systems and big data analytics.","PeriodicalId":143253,"journal":{"name":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","volume":"270 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The 1st International Workshop on Context-Aware Recommendation Systems with Big Data Analytics (CARS-BDA)\",\"authors\":\"Xiangmin Zhou, Ji Zhang, Yanchun Zhang\",\"doi\":\"10.1145/3289600.3291372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the explosive growth of online service platforms, increasing number of people and enterprises are doing everything online. In order for organizations, governments, and individuals to understand their users, and promote their products or services, it is necessary for them to analyse big data and recommend the media or online services in real time. Effective recommendation of items of interest to consumers has become critical for enterprises in domains such as retail, e-commerce, and online media. Driven by the business successes, academic research in this field has also been active for many years. Through many scientific breakthroughs have been achieved, there are still tremendous challenges in developing effective and scalable recommendation systems for real-world industrial applications. Existing solutions focus on recommending items based on pre-set contexts, such as time, location, weather etc. The big data sizes and complex contextual information add further challenges to the deployment of advanced recommender systems. This workshop aims to bring together researchers with wide-ranging backgrounds to identify important research questions, to exchange ideas from different research disciplines, and, more generally, to facilitate discussion and innovation in the area of context-aware recommender systems and big data analytics.\",\"PeriodicalId\":143253,\"journal\":{\"name\":\"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining\",\"volume\":\"270 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3289600.3291372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3289600.3291372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The 1st International Workshop on Context-Aware Recommendation Systems with Big Data Analytics (CARS-BDA)
With the explosive growth of online service platforms, increasing number of people and enterprises are doing everything online. In order for organizations, governments, and individuals to understand their users, and promote their products or services, it is necessary for them to analyse big data and recommend the media or online services in real time. Effective recommendation of items of interest to consumers has become critical for enterprises in domains such as retail, e-commerce, and online media. Driven by the business successes, academic research in this field has also been active for many years. Through many scientific breakthroughs have been achieved, there are still tremendous challenges in developing effective and scalable recommendation systems for real-world industrial applications. Existing solutions focus on recommending items based on pre-set contexts, such as time, location, weather etc. The big data sizes and complex contextual information add further challenges to the deployment of advanced recommender systems. This workshop aims to bring together researchers with wide-ranging backgrounds to identify important research questions, to exchange ideas from different research disciplines, and, more generally, to facilitate discussion and innovation in the area of context-aware recommender systems and big data analytics.