{"title":"TSK神经模糊建模中规则库简化和可解释性约束学习","authors":"Sharifa Rajab","doi":"10.4018/ijfsa.2020040102","DOIUrl":null,"url":null,"abstract":"Neuro-fuzzysystemsbasedonafuzzymodelproposedbyTakagi,SugenoandKangknownasthe TSK fuzzymodelprovideapowerfulmethod formodellinguncertainandhighlycomplexnonlinearsystems.TheinitialfuzzyrulebaseinTSKneuro-fuzzysystemsisusuallyobtainedusing datadrivenapproaches.Thisprocessinducesredundancyintothesystembyaddingredundantfuzzy rulesandfuzzysets.Thisincreasescomplexitywhichadverselyaffectsgeneralizationcapabilityand transparencyofthefuzzymodelbeingdesigned.Inthisarticle,theauthorsexplorethepotentialof TSKfuzzymodelling indevelopingcomparatively interpretableneuro-fuzzysystemswithbetter generalizationcapabilityintermsofhigherapproximationaccuracy.Theapproachisbasedonthree phases,thefirstphasedealswithautomaticdatadrivenrulebaseinductionfollowedbyrulebase simplificationphase.Rulebasesimplificationusessimilarityanalysistoremovesimilarfuzzysets andresultingredundantfuzzyrulesfromtherulebase,therebysimplifyingtheneuro-fuzzymodel. Duringthethirdphase,theparametersofmembershipfunctionsarefine-tunedusingaconstrained hybridlearningtechnique.Thelearningprocessisconstrainedwhichpreventsuncheckedupdatesto theparameterssothatahighlycomplexrulebasedoesnotemergeattheendofmodeloptimization phase.Anempiricalinvestigationofthismethodologyisdonebyapplicationofthisapproachtotwo well-knownnon-linearbenchmark forecastingproblemsanda real-world stockprice forecasting problem.The results indicate that rulebase simplificationusinga similarity analysis effectively removesredundancyfromthesystemwhichimprovesinterpretability.Theremovalofredundancy alsoincreasedthegeneralizationcapabilityofthesystemmeasuredintermsofincreasedforecasting accuracy. For all the three forecasting problems the proposed neuro-fuzzy system demonstrated betteraccuracy-interpretabilitytradeoffascomparedtotwowell-knownTSKneuro-fuzzymodels forfunctionapproximation. rule Base Simplification and Constrained Learning for Interpretability in TSK Neuro-Fuzzy Modelling","PeriodicalId":233724,"journal":{"name":"Int. J. Fuzzy Syst. Appl.","volume":"292 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Rule Base Simplification and Constrained Learning for Interpretability in TSK Neuro-Fuzzy Modelling\",\"authors\":\"Sharifa Rajab\",\"doi\":\"10.4018/ijfsa.2020040102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neuro-fuzzysystemsbasedonafuzzymodelproposedbyTakagi,SugenoandKangknownasthe TSK fuzzymodelprovideapowerfulmethod formodellinguncertainandhighlycomplexnonlinearsystems.TheinitialfuzzyrulebaseinTSKneuro-fuzzysystemsisusuallyobtainedusing datadrivenapproaches.Thisprocessinducesredundancyintothesystembyaddingredundantfuzzy rulesandfuzzysets.Thisincreasescomplexitywhichadverselyaffectsgeneralizationcapabilityand transparencyofthefuzzymodelbeingdesigned.Inthisarticle,theauthorsexplorethepotentialof TSKfuzzymodelling indevelopingcomparatively interpretableneuro-fuzzysystemswithbetter generalizationcapabilityintermsofhigherapproximationaccuracy.Theapproachisbasedonthree phases,thefirstphasedealswithautomaticdatadrivenrulebaseinductionfollowedbyrulebase simplificationphase.Rulebasesimplificationusessimilarityanalysistoremovesimilarfuzzysets andresultingredundantfuzzyrulesfromtherulebase,therebysimplifyingtheneuro-fuzzymodel. Duringthethirdphase,theparametersofmembershipfunctionsarefine-tunedusingaconstrained hybridlearningtechnique.Thelearningprocessisconstrainedwhichpreventsuncheckedupdatesto theparameterssothatahighlycomplexrulebasedoesnotemergeattheendofmodeloptimization phase.Anempiricalinvestigationofthismethodologyisdonebyapplicationofthisapproachtotwo well-knownnon-linearbenchmark forecastingproblemsanda real-world stockprice forecasting problem.The results indicate that rulebase simplificationusinga similarity analysis effectively removesredundancyfromthesystemwhichimprovesinterpretability.Theremovalofredundancy alsoincreasedthegeneralizationcapabilityofthesystemmeasuredintermsofincreasedforecasting accuracy. For all the three forecasting problems the proposed neuro-fuzzy system demonstrated betteraccuracy-interpretabilitytradeoffascomparedtotwowell-knownTSKneuro-fuzzymodels forfunctionapproximation. rule Base Simplification and Constrained Learning for Interpretability in TSK Neuro-Fuzzy Modelling\",\"PeriodicalId\":233724,\"journal\":{\"name\":\"Int. J. Fuzzy Syst. Appl.\",\"volume\":\"292 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Fuzzy Syst. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijfsa.2020040102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Fuzzy Syst. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijfsa.2020040102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Rule Base Simplification and Constrained Learning for Interpretability in TSK Neuro-Fuzzy Modelling
Neuro-fuzzysystemsbasedonafuzzymodelproposedbyTakagi,SugenoandKangknownasthe TSK fuzzymodelprovideapowerfulmethod formodellinguncertainandhighlycomplexnonlinearsystems.TheinitialfuzzyrulebaseinTSKneuro-fuzzysystemsisusuallyobtainedusing datadrivenapproaches.Thisprocessinducesredundancyintothesystembyaddingredundantfuzzy rulesandfuzzysets.Thisincreasescomplexitywhichadverselyaffectsgeneralizationcapabilityand transparencyofthefuzzymodelbeingdesigned.Inthisarticle,theauthorsexplorethepotentialof TSKfuzzymodelling indevelopingcomparatively interpretableneuro-fuzzysystemswithbetter generalizationcapabilityintermsofhigherapproximationaccuracy.Theapproachisbasedonthree phases,thefirstphasedealswithautomaticdatadrivenrulebaseinductionfollowedbyrulebase simplificationphase.Rulebasesimplificationusessimilarityanalysistoremovesimilarfuzzysets andresultingredundantfuzzyrulesfromtherulebase,therebysimplifyingtheneuro-fuzzymodel. Duringthethirdphase,theparametersofmembershipfunctionsarefine-tunedusingaconstrained hybridlearningtechnique.Thelearningprocessisconstrainedwhichpreventsuncheckedupdatesto theparameterssothatahighlycomplexrulebasedoesnotemergeattheendofmodeloptimization phase.Anempiricalinvestigationofthismethodologyisdonebyapplicationofthisapproachtotwo well-knownnon-linearbenchmark forecastingproblemsanda real-world stockprice forecasting problem.The results indicate that rulebase simplificationusinga similarity analysis effectively removesredundancyfromthesystemwhichimprovesinterpretability.Theremovalofredundancy alsoincreasedthegeneralizationcapabilityofthesystemmeasuredintermsofincreasedforecasting accuracy. For all the three forecasting problems the proposed neuro-fuzzy system demonstrated betteraccuracy-interpretabilitytradeoffascomparedtotwowell-knownTSKneuro-fuzzymodels forfunctionapproximation. rule Base Simplification and Constrained Learning for Interpretability in TSK Neuro-Fuzzy Modelling