TSK神经模糊建模中规则库简化和可解释性约束学习

Sharifa Rajab
{"title":"TSK神经模糊建模中规则库简化和可解释性约束学习","authors":"Sharifa Rajab","doi":"10.4018/ijfsa.2020040102","DOIUrl":null,"url":null,"abstract":"Neuro-fuzzysystemsbasedonafuzzymodelproposedbyTakagi,SugenoandKangknownasthe TSK fuzzymodelprovideapowerfulmethod formodellinguncertainandhighlycomplexnonlinearsystems.TheinitialfuzzyrulebaseinTSKneuro-fuzzysystemsisusuallyobtainedusing datadrivenapproaches.Thisprocessinducesredundancyintothesystembyaddingredundantfuzzy rulesandfuzzysets.Thisincreasescomplexitywhichadverselyaffectsgeneralizationcapabilityand transparencyofthefuzzymodelbeingdesigned.Inthisarticle,theauthorsexplorethepotentialof TSKfuzzymodelling indevelopingcomparatively interpretableneuro-fuzzysystemswithbetter generalizationcapabilityintermsofhigherapproximationaccuracy.Theapproachisbasedonthree phases,thefirstphasedealswithautomaticdatadrivenrulebaseinductionfollowedbyrulebase simplificationphase.Rulebasesimplificationusessimilarityanalysistoremovesimilarfuzzysets andresultingredundantfuzzyrulesfromtherulebase,therebysimplifyingtheneuro-fuzzymodel. Duringthethirdphase,theparametersofmembershipfunctionsarefine-tunedusingaconstrained hybridlearningtechnique.Thelearningprocessisconstrainedwhichpreventsuncheckedupdatesto theparameterssothatahighlycomplexrulebasedoesnotemergeattheendofmodeloptimization phase.Anempiricalinvestigationofthismethodologyisdonebyapplicationofthisapproachtotwo well-knownnon-linearbenchmark forecastingproblemsanda real-world stockprice forecasting problem.The results indicate that rulebase simplificationusinga similarity analysis effectively removesredundancyfromthesystemwhichimprovesinterpretability.Theremovalofredundancy alsoincreasedthegeneralizationcapabilityofthesystemmeasuredintermsofincreasedforecasting accuracy. For all the three forecasting problems the proposed neuro-fuzzy system demonstrated betteraccuracy-interpretabilitytradeoffascomparedtotwowell-knownTSKneuro-fuzzymodels forfunctionapproximation. rule Base Simplification and Constrained Learning for Interpretability in TSK Neuro-Fuzzy Modelling","PeriodicalId":233724,"journal":{"name":"Int. J. Fuzzy Syst. Appl.","volume":"292 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Rule Base Simplification and Constrained Learning for Interpretability in TSK Neuro-Fuzzy Modelling\",\"authors\":\"Sharifa Rajab\",\"doi\":\"10.4018/ijfsa.2020040102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neuro-fuzzysystemsbasedonafuzzymodelproposedbyTakagi,SugenoandKangknownasthe TSK fuzzymodelprovideapowerfulmethod formodellinguncertainandhighlycomplexnonlinearsystems.TheinitialfuzzyrulebaseinTSKneuro-fuzzysystemsisusuallyobtainedusing datadrivenapproaches.Thisprocessinducesredundancyintothesystembyaddingredundantfuzzy rulesandfuzzysets.Thisincreasescomplexitywhichadverselyaffectsgeneralizationcapabilityand transparencyofthefuzzymodelbeingdesigned.Inthisarticle,theauthorsexplorethepotentialof TSKfuzzymodelling indevelopingcomparatively interpretableneuro-fuzzysystemswithbetter generalizationcapabilityintermsofhigherapproximationaccuracy.Theapproachisbasedonthree phases,thefirstphasedealswithautomaticdatadrivenrulebaseinductionfollowedbyrulebase simplificationphase.Rulebasesimplificationusessimilarityanalysistoremovesimilarfuzzysets andresultingredundantfuzzyrulesfromtherulebase,therebysimplifyingtheneuro-fuzzymodel. Duringthethirdphase,theparametersofmembershipfunctionsarefine-tunedusingaconstrained hybridlearningtechnique.Thelearningprocessisconstrainedwhichpreventsuncheckedupdatesto theparameterssothatahighlycomplexrulebasedoesnotemergeattheendofmodeloptimization phase.Anempiricalinvestigationofthismethodologyisdonebyapplicationofthisapproachtotwo well-knownnon-linearbenchmark forecastingproblemsanda real-world stockprice forecasting problem.The results indicate that rulebase simplificationusinga similarity analysis effectively removesredundancyfromthesystemwhichimprovesinterpretability.Theremovalofredundancy alsoincreasedthegeneralizationcapabilityofthesystemmeasuredintermsofincreasedforecasting accuracy. For all the three forecasting problems the proposed neuro-fuzzy system demonstrated betteraccuracy-interpretabilitytradeoffascomparedtotwowell-knownTSKneuro-fuzzymodels forfunctionapproximation. rule Base Simplification and Constrained Learning for Interpretability in TSK Neuro-Fuzzy Modelling\",\"PeriodicalId\":233724,\"journal\":{\"name\":\"Int. J. Fuzzy Syst. Appl.\",\"volume\":\"292 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Fuzzy Syst. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijfsa.2020040102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Fuzzy Syst. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijfsa.2020040102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

Neuro-fuzzysystemsbasedonafuzzymodelproposedbyTakagi,SugenoandKangknownasthe tsk_ fuzzymodelprovideapowerfulmethod formodellinguncertainandhighlycomplexnonlinearsystems。TheinitialfuzzyrulebaseinTSKneuro-fuzzysystemsisusuallyobtainedusing datadrivenapproaches。Thisprocessinducesredundancyintothesystembyaddingredundantfuzzy rulesandfuzzysets。Thisincreasescomplexitywhichadverselyaffectsgeneralizationcapabilityand transparencyofthefuzzymodelbeingdesigned。Inthisarticle,theauthorsexplorethepotentialof TSKfuzzymodelling indevelopingcomparatively interpretableneuro-fuzzysystemswithbetter generalizationcapabilityintermsofhigherapproximationaccuracy。Theapproachisbasedonthree阶段,thefirstphasedealswithautomaticdatadrivenrulebaseinductionfollowedbyrulebase simplificationphase。Rulebasesimplificationusessimilarityanalysistoremovesimilarfuzzysets andresultingredundantfuzzyrulesfromtherulebase,therebysimplifyingtheneuro-fuzzymodel。Duringthethirdphase,theparametersofmembershipfunctionsarefine-tunedusingaconstrained hybridlearningtechnique。Thelearningprocessisconstrainedwhichpreventsuncheckedupdatesto theparameterssothatahighlycomplexrulebasedoesnotemergeattheendofmodeloptimization阶段。Anempiricalinvestigationofthismethodologyisdonebyapplicationofthisapproachtotwo well-knownnon-linearbenchmark forecastingproblemsanda现实世界的stockprice预测问题。The结果表明,rulebase simplificationusinga相似度分析是有效的。removesredundancyfromthesystemwhichimprovesinterpretabilityTheremovalofredundancy alsoincreasedthegeneralizationcapabilityofthesystemmeasuredintermsofincreasedforecasting准确性。对于所有这三个预测问题,我们都演示了所提出的神经模糊系统betteraccuracy-interpretabilitytradeoffascomparedtotwowell-knownTSKneuro-fuzzymodels forfunctionapproximation。基于TSK神经模糊建模的规则库简化和可解释性约束学习
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rule Base Simplification and Constrained Learning for Interpretability in TSK Neuro-Fuzzy Modelling
Neuro-fuzzysystemsbasedonafuzzymodelproposedbyTakagi,SugenoandKangknownasthe TSK fuzzymodelprovideapowerfulmethod formodellinguncertainandhighlycomplexnonlinearsystems.TheinitialfuzzyrulebaseinTSKneuro-fuzzysystemsisusuallyobtainedusing datadrivenapproaches.Thisprocessinducesredundancyintothesystembyaddingredundantfuzzy rulesandfuzzysets.Thisincreasescomplexitywhichadverselyaffectsgeneralizationcapabilityand transparencyofthefuzzymodelbeingdesigned.Inthisarticle,theauthorsexplorethepotentialof TSKfuzzymodelling indevelopingcomparatively interpretableneuro-fuzzysystemswithbetter generalizationcapabilityintermsofhigherapproximationaccuracy.Theapproachisbasedonthree phases,thefirstphasedealswithautomaticdatadrivenrulebaseinductionfollowedbyrulebase simplificationphase.Rulebasesimplificationusessimilarityanalysistoremovesimilarfuzzysets andresultingredundantfuzzyrulesfromtherulebase,therebysimplifyingtheneuro-fuzzymodel. Duringthethirdphase,theparametersofmembershipfunctionsarefine-tunedusingaconstrained hybridlearningtechnique.Thelearningprocessisconstrainedwhichpreventsuncheckedupdatesto theparameterssothatahighlycomplexrulebasedoesnotemergeattheendofmodeloptimization phase.Anempiricalinvestigationofthismethodologyisdonebyapplicationofthisapproachtotwo well-knownnon-linearbenchmark forecastingproblemsanda real-world stockprice forecasting problem.The results indicate that rulebase simplificationusinga similarity analysis effectively removesredundancyfromthesystemwhichimprovesinterpretability.Theremovalofredundancy alsoincreasedthegeneralizationcapabilityofthesystemmeasuredintermsofincreasedforecasting accuracy. For all the three forecasting problems the proposed neuro-fuzzy system demonstrated betteraccuracy-interpretabilitytradeoffascomparedtotwowell-knownTSKneuro-fuzzymodels forfunctionapproximation. rule Base Simplification and Constrained Learning for Interpretability in TSK Neuro-Fuzzy Modelling
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信