网络学习中学生粗粒检测的聚类与分类模型

R. R. Maaliw, K. Quing, Julie Ann B. Susa, Jed Frank S. Maraueses, A. Lagman, Rossana Adao, Ma.Corazon Fernando Raguro, Ranie B. Canlas
{"title":"网络学习中学生粗粒检测的聚类与分类模型","authors":"R. R. Maaliw, K. Quing, Julie Ann B. Susa, Jed Frank S. Maraueses, A. Lagman, Rossana Adao, Ma.Corazon Fernando Raguro, Ranie B. Canlas","doi":"10.1109/aiiot54504.2022.9817177","DOIUrl":null,"url":null,"abstract":"Grit plays a crucial role in determining high individual success more than intellectual talent alone. However, there is no existing literature that ventured into the trait identification in an e-learning environment. This study presents a comprehensive computational-driven strategy for detecting a learner's grit using machine learning. Empirical results show that DBSCAN and Random Forest models produce average accurate prediction consistency of 92.67% against the questionnaire method. Knowledge interpretation using feature importance and association mining quantifies perseverance and sustained interest as the most pressing component of grit. Correlational analysis reveals that grit has a weak connection with course grades (short-term goal) but demonstrates a strong positive association with professional achievement (long-term goal) and maturation. Collectively, our findings substantiate that breakthrough accomplishment is contingent not solely on cognitive ability but on constant interests and resilience.","PeriodicalId":409264,"journal":{"name":"2022 IEEE World AI IoT Congress (AIIoT)","volume":"266 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Clustering and Classification Models For Student's Grit Detection in E-Learning\",\"authors\":\"R. R. Maaliw, K. Quing, Julie Ann B. Susa, Jed Frank S. Maraueses, A. Lagman, Rossana Adao, Ma.Corazon Fernando Raguro, Ranie B. Canlas\",\"doi\":\"10.1109/aiiot54504.2022.9817177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grit plays a crucial role in determining high individual success more than intellectual talent alone. However, there is no existing literature that ventured into the trait identification in an e-learning environment. This study presents a comprehensive computational-driven strategy for detecting a learner's grit using machine learning. Empirical results show that DBSCAN and Random Forest models produce average accurate prediction consistency of 92.67% against the questionnaire method. Knowledge interpretation using feature importance and association mining quantifies perseverance and sustained interest as the most pressing component of grit. Correlational analysis reveals that grit has a weak connection with course grades (short-term goal) but demonstrates a strong positive association with professional achievement (long-term goal) and maturation. Collectively, our findings substantiate that breakthrough accomplishment is contingent not solely on cognitive ability but on constant interests and resilience.\",\"PeriodicalId\":409264,\"journal\":{\"name\":\"2022 IEEE World AI IoT Congress (AIIoT)\",\"volume\":\"266 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE World AI IoT Congress (AIIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/aiiot54504.2022.9817177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE World AI IoT Congress (AIIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/aiiot54504.2022.9817177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

在决定个人成功方面,毅力比智力本身更重要。然而,目前尚无文献对电子学习环境下的特征识别进行研究。本研究提出了一种全面的计算驱动策略,用于使用机器学习来检测学习者的毅力。实证结果表明,DBSCAN和Random Forest模型相对于问卷法的预测准确率平均达到92.67%。使用特征重要性和关联挖掘的知识解释将毅力和持续兴趣量化为砂砾最紧迫的组成部分。相关分析表明,毅力与课程成绩(短期目标)的关系较弱,但与专业成就(长期目标)和成熟度的关系较强。总的来说,我们的研究结果证实,突破性的成就不仅取决于认知能力,还取决于持续的兴趣和适应能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Clustering and Classification Models For Student's Grit Detection in E-Learning
Grit plays a crucial role in determining high individual success more than intellectual talent alone. However, there is no existing literature that ventured into the trait identification in an e-learning environment. This study presents a comprehensive computational-driven strategy for detecting a learner's grit using machine learning. Empirical results show that DBSCAN and Random Forest models produce average accurate prediction consistency of 92.67% against the questionnaire method. Knowledge interpretation using feature importance and association mining quantifies perseverance and sustained interest as the most pressing component of grit. Correlational analysis reveals that grit has a weak connection with course grades (short-term goal) but demonstrates a strong positive association with professional achievement (long-term goal) and maturation. Collectively, our findings substantiate that breakthrough accomplishment is contingent not solely on cognitive ability but on constant interests and resilience.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信