电网规范对储能系统的功率和小时容量要求

Masakazu Ito, Y. Fujimoto, Masataka Mitsuoka, H. Ishii, Y. Hayashi
{"title":"电网规范对储能系统的功率和小时容量要求","authors":"Masakazu Ito, Y. Fujimoto, Masataka Mitsuoka, H. Ishii, Y. Hayashi","doi":"10.1109/APPEEC.2015.7381022","DOIUrl":null,"url":null,"abstract":"This paper studied power and hour capacity requirement for energy storage by two approaches. First one is evaluations without constrained condition of power and hour capacity with 80 sets of maximum ramp rates and time windows. And second one is evaluations with constrained condition of power and hour capacity for 2 grid codes (less than 0.1pu change of wind farm (WF) capacity in 20min time window, showing 0.1pu/20min in this paper, and 0.3pu/360min) to see details. The first evaluation in case of 3a resulted 1.0 pu power capacity (charge plus discharge capacity for all result) and 1.3 to 2.2 pu-h hour capacity are required to satisfy maximum ramp rate in time window of 0.1pu/20min. And 1.2 to 1.3 pu and 13 to 18 pu-h are required for 0.3pu/360min. And from the second evaluation in case of 3a, 0.7 to 0.8 pu power capacity and 1 to 2 pu-h for 0.1pu/20min and 1.0 pu and 10 to 15 pu-h are required for 0.3pu/360min. This paper provides relationship between maximum ramp rate in time windows and power and hour capacity requirement. The results help to answer questions whether power and hour capacity requirement satisfy grid codes with simple operating method of an energy storage system.","PeriodicalId":439089,"journal":{"name":"2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Power and hour capacity requirement for an energy storage from grid codes\",\"authors\":\"Masakazu Ito, Y. Fujimoto, Masataka Mitsuoka, H. Ishii, Y. Hayashi\",\"doi\":\"10.1109/APPEEC.2015.7381022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studied power and hour capacity requirement for energy storage by two approaches. First one is evaluations without constrained condition of power and hour capacity with 80 sets of maximum ramp rates and time windows. And second one is evaluations with constrained condition of power and hour capacity for 2 grid codes (less than 0.1pu change of wind farm (WF) capacity in 20min time window, showing 0.1pu/20min in this paper, and 0.3pu/360min) to see details. The first evaluation in case of 3a resulted 1.0 pu power capacity (charge plus discharge capacity for all result) and 1.3 to 2.2 pu-h hour capacity are required to satisfy maximum ramp rate in time window of 0.1pu/20min. And 1.2 to 1.3 pu and 13 to 18 pu-h are required for 0.3pu/360min. And from the second evaluation in case of 3a, 0.7 to 0.8 pu power capacity and 1 to 2 pu-h for 0.1pu/20min and 1.0 pu and 10 to 15 pu-h are required for 0.3pu/360min. This paper provides relationship between maximum ramp rate in time windows and power and hour capacity requirement. The results help to answer questions whether power and hour capacity requirement satisfy grid codes with simple operating method of an energy storage system.\",\"PeriodicalId\":439089,\"journal\":{\"name\":\"2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APPEEC.2015.7381022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APPEEC.2015.7381022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文通过两种方法研究了储能的功率和小时容量需求。第一个是不受约束条件下的功率和小时容量的评估,具有80组最大斜坡率和时间窗。二是对2个电网代码(风电场容量在20min时间窗内变化小于0.1pu,文中为0.1pu/20min,文中为0.3pu/360min)的功率和小时容量约束条件下的评价。在3a的情况下,第一次评估的结果是1.0 pu的功率容量(所有结果的充电和放电容量)和1.3到2.2 pu-h的小时容量,以满足0.1pu/20min时间窗内的最大斜坡速率。0.3pu/360min需要1.2 ~ 1.3 pu, 13 ~ 18 pu-h。从3a情况的第二次评估来看,0.1pu/20min需要0.7 ~ 0.8 pu的功率容量和1 ~ 2 pu-h, 0.3pu/360min需要1.0 pu和10 ~ 15 pu-h。本文给出了时间窗内最大斜坡率与功率和小时容量需求的关系。研究结果有助于回答储能系统简单运行方式下的功率和小时容量需求是否满足电网规范的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power and hour capacity requirement for an energy storage from grid codes
This paper studied power and hour capacity requirement for energy storage by two approaches. First one is evaluations without constrained condition of power and hour capacity with 80 sets of maximum ramp rates and time windows. And second one is evaluations with constrained condition of power and hour capacity for 2 grid codes (less than 0.1pu change of wind farm (WF) capacity in 20min time window, showing 0.1pu/20min in this paper, and 0.3pu/360min) to see details. The first evaluation in case of 3a resulted 1.0 pu power capacity (charge plus discharge capacity for all result) and 1.3 to 2.2 pu-h hour capacity are required to satisfy maximum ramp rate in time window of 0.1pu/20min. And 1.2 to 1.3 pu and 13 to 18 pu-h are required for 0.3pu/360min. And from the second evaluation in case of 3a, 0.7 to 0.8 pu power capacity and 1 to 2 pu-h for 0.1pu/20min and 1.0 pu and 10 to 15 pu-h are required for 0.3pu/360min. This paper provides relationship between maximum ramp rate in time windows and power and hour capacity requirement. The results help to answer questions whether power and hour capacity requirement satisfy grid codes with simple operating method of an energy storage system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信