Masakazu Ito, Y. Fujimoto, Masataka Mitsuoka, H. Ishii, Y. Hayashi
{"title":"电网规范对储能系统的功率和小时容量要求","authors":"Masakazu Ito, Y. Fujimoto, Masataka Mitsuoka, H. Ishii, Y. Hayashi","doi":"10.1109/APPEEC.2015.7381022","DOIUrl":null,"url":null,"abstract":"This paper studied power and hour capacity requirement for energy storage by two approaches. First one is evaluations without constrained condition of power and hour capacity with 80 sets of maximum ramp rates and time windows. And second one is evaluations with constrained condition of power and hour capacity for 2 grid codes (less than 0.1pu change of wind farm (WF) capacity in 20min time window, showing 0.1pu/20min in this paper, and 0.3pu/360min) to see details. The first evaluation in case of 3a resulted 1.0 pu power capacity (charge plus discharge capacity for all result) and 1.3 to 2.2 pu-h hour capacity are required to satisfy maximum ramp rate in time window of 0.1pu/20min. And 1.2 to 1.3 pu and 13 to 18 pu-h are required for 0.3pu/360min. And from the second evaluation in case of 3a, 0.7 to 0.8 pu power capacity and 1 to 2 pu-h for 0.1pu/20min and 1.0 pu and 10 to 15 pu-h are required for 0.3pu/360min. This paper provides relationship between maximum ramp rate in time windows and power and hour capacity requirement. The results help to answer questions whether power and hour capacity requirement satisfy grid codes with simple operating method of an energy storage system.","PeriodicalId":439089,"journal":{"name":"2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Power and hour capacity requirement for an energy storage from grid codes\",\"authors\":\"Masakazu Ito, Y. Fujimoto, Masataka Mitsuoka, H. Ishii, Y. Hayashi\",\"doi\":\"10.1109/APPEEC.2015.7381022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studied power and hour capacity requirement for energy storage by two approaches. First one is evaluations without constrained condition of power and hour capacity with 80 sets of maximum ramp rates and time windows. And second one is evaluations with constrained condition of power and hour capacity for 2 grid codes (less than 0.1pu change of wind farm (WF) capacity in 20min time window, showing 0.1pu/20min in this paper, and 0.3pu/360min) to see details. The first evaluation in case of 3a resulted 1.0 pu power capacity (charge plus discharge capacity for all result) and 1.3 to 2.2 pu-h hour capacity are required to satisfy maximum ramp rate in time window of 0.1pu/20min. And 1.2 to 1.3 pu and 13 to 18 pu-h are required for 0.3pu/360min. And from the second evaluation in case of 3a, 0.7 to 0.8 pu power capacity and 1 to 2 pu-h for 0.1pu/20min and 1.0 pu and 10 to 15 pu-h are required for 0.3pu/360min. This paper provides relationship between maximum ramp rate in time windows and power and hour capacity requirement. The results help to answer questions whether power and hour capacity requirement satisfy grid codes with simple operating method of an energy storage system.\",\"PeriodicalId\":439089,\"journal\":{\"name\":\"2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APPEEC.2015.7381022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APPEEC.2015.7381022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Power and hour capacity requirement for an energy storage from grid codes
This paper studied power and hour capacity requirement for energy storage by two approaches. First one is evaluations without constrained condition of power and hour capacity with 80 sets of maximum ramp rates and time windows. And second one is evaluations with constrained condition of power and hour capacity for 2 grid codes (less than 0.1pu change of wind farm (WF) capacity in 20min time window, showing 0.1pu/20min in this paper, and 0.3pu/360min) to see details. The first evaluation in case of 3a resulted 1.0 pu power capacity (charge plus discharge capacity for all result) and 1.3 to 2.2 pu-h hour capacity are required to satisfy maximum ramp rate in time window of 0.1pu/20min. And 1.2 to 1.3 pu and 13 to 18 pu-h are required for 0.3pu/360min. And from the second evaluation in case of 3a, 0.7 to 0.8 pu power capacity and 1 to 2 pu-h for 0.1pu/20min and 1.0 pu and 10 to 15 pu-h are required for 0.3pu/360min. This paper provides relationship between maximum ramp rate in time windows and power and hour capacity requirement. The results help to answer questions whether power and hour capacity requirement satisfy grid codes with simple operating method of an energy storage system.