动态概率密度函数非参数估计的自适应方法

Cristian Pana, S. Severi, G. Abreu
{"title":"动态概率密度函数非参数估计的自适应方法","authors":"Cristian Pana, S. Severi, G. Abreu","doi":"10.1109/WPNC.2016.7822839","DOIUrl":null,"url":null,"abstract":"Accurate and flexible probability density estimation is fundamental in machine learning tasks, in classification and routine data analyses applications. In this paper we propose an adaptive version of the Histogram Trend Filtering (HTF), which is a relatively new method used for non-parametric density estimation. This technique enjoys low computational complexity, while being able to automatically detect abrupt changes in the underlying dynamics of the estimated distribution. Therefore, it can deal with estimating both stationary and non-stationary distributions.","PeriodicalId":148664,"journal":{"name":"2016 13th Workshop on Positioning, Navigation and Communications (WPNC)","volume":"552 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An adaptive approach to non-parametric estimation of dynamic probability density functions\",\"authors\":\"Cristian Pana, S. Severi, G. Abreu\",\"doi\":\"10.1109/WPNC.2016.7822839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate and flexible probability density estimation is fundamental in machine learning tasks, in classification and routine data analyses applications. In this paper we propose an adaptive version of the Histogram Trend Filtering (HTF), which is a relatively new method used for non-parametric density estimation. This technique enjoys low computational complexity, while being able to automatically detect abrupt changes in the underlying dynamics of the estimated distribution. Therefore, it can deal with estimating both stationary and non-stationary distributions.\",\"PeriodicalId\":148664,\"journal\":{\"name\":\"2016 13th Workshop on Positioning, Navigation and Communications (WPNC)\",\"volume\":\"552 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 13th Workshop on Positioning, Navigation and Communications (WPNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WPNC.2016.7822839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th Workshop on Positioning, Navigation and Communications (WPNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPNC.2016.7822839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

准确灵活的概率密度估计是机器学习任务、分类和常规数据分析应用的基础。本文提出了直方图趋势滤波(HTF)的自适应版本,这是一种用于非参数密度估计的相对较新的方法。该技术具有较低的计算复杂度,同时能够自动检测估计分布的底层动态中的突变。因此,它可以同时处理平稳分布和非平稳分布的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An adaptive approach to non-parametric estimation of dynamic probability density functions
Accurate and flexible probability density estimation is fundamental in machine learning tasks, in classification and routine data analyses applications. In this paper we propose an adaptive version of the Histogram Trend Filtering (HTF), which is a relatively new method used for non-parametric density estimation. This technique enjoys low computational complexity, while being able to automatically detect abrupt changes in the underlying dynamics of the estimated distribution. Therefore, it can deal with estimating both stationary and non-stationary distributions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信