采用遗传算法和模拟退火技术实现面向目标的测试数据自动生成

Mukesh Mann, O. Sangwan, P. Tomar, Shivani Singh
{"title":"采用遗传算法和模拟退火技术实现面向目标的测试数据自动生成","authors":"Mukesh Mann, O. Sangwan, P. Tomar, Shivani Singh","doi":"10.1109/CONFLUENCE.2016.7508052","DOIUrl":null,"url":null,"abstract":"The literature on automatic test case generation has significantly arguments its importance in software testing. The solution to this un-decidable problem can reduce the financial resources spent in testing a software system. In this paper Evolutionary Genetic algorithm and simulated annealing based approach for automatic test case generation is presented. The fitness of target goal is achieved by instrumenting the program using branch distance approach and the generated test cases using genetic algorithm and simulated annealing are evaluated and compared in terms of 1) number of generation needed to reach to the target goal and 2) The time taken to generate test cases.","PeriodicalId":299044,"journal":{"name":"2016 6th International Conference - Cloud System and Big Data Engineering (Confluence)","volume":"262 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Automatic goal-oriented test data generation using a Genetic algorithm and simulated annealing\",\"authors\":\"Mukesh Mann, O. Sangwan, P. Tomar, Shivani Singh\",\"doi\":\"10.1109/CONFLUENCE.2016.7508052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The literature on automatic test case generation has significantly arguments its importance in software testing. The solution to this un-decidable problem can reduce the financial resources spent in testing a software system. In this paper Evolutionary Genetic algorithm and simulated annealing based approach for automatic test case generation is presented. The fitness of target goal is achieved by instrumenting the program using branch distance approach and the generated test cases using genetic algorithm and simulated annealing are evaluated and compared in terms of 1) number of generation needed to reach to the target goal and 2) The time taken to generate test cases.\",\"PeriodicalId\":299044,\"journal\":{\"name\":\"2016 6th International Conference - Cloud System and Big Data Engineering (Confluence)\",\"volume\":\"262 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 6th International Conference - Cloud System and Big Data Engineering (Confluence)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CONFLUENCE.2016.7508052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th International Conference - Cloud System and Big Data Engineering (Confluence)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONFLUENCE.2016.7508052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

关于自动测试用例生成的文献对其在软件测试中的重要性有着重要的争论。这个不确定问题的解决方案可以减少用于测试软件系统的财务资源。本文提出了一种基于进化遗传算法和模拟退火的测试用例自动生成方法。采用分支距离法对程序进行检测,得到了目标目标的适应度,并对采用遗传算法和模拟退火生成的测试用例进行了评估和比较,包括:1)达到目标目标所需的生成次数和2)生成测试用例所需的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic goal-oriented test data generation using a Genetic algorithm and simulated annealing
The literature on automatic test case generation has significantly arguments its importance in software testing. The solution to this un-decidable problem can reduce the financial resources spent in testing a software system. In this paper Evolutionary Genetic algorithm and simulated annealing based approach for automatic test case generation is presented. The fitness of target goal is achieved by instrumenting the program using branch distance approach and the generated test cases using genetic algorithm and simulated annealing are evaluated and compared in terms of 1) number of generation needed to reach to the target goal and 2) The time taken to generate test cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信