{"title":"将Fitts定律中的有效目标宽度扩展到二维指向任务","authors":"A. Murata","doi":"10.1207/S153275901102_4","DOIUrl":null,"url":null,"abstract":"This research was designed to develop the definition of effective target width in a 2-dimensional pointing task. The idea of effective target width in a 1-dimensional pointing task was extended to effective target width in a 2-dimensional pointing task using the 2-dimensional joint probability density function. The validity of this theoretical definition was empirically verified. In the experiment, the moving direction of the mouse was from lower left to upper right. The approach angle was fixed to 45°. The fit of conventional and new models to the experimental data was compared by means of contribution of the regression line that showed the relation between the index of difficulty and the mean pointing time. As a result, we could obtain higher values of contribution for the modeling that introduced effective target width than that for the conventional modeling without it. In conclusion, the proposed 2-dimensional definition of effective target width may be promising for predicting and modeling pointing t...","PeriodicalId":208962,"journal":{"name":"Int. J. Hum. Comput. Interact.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":"{\"title\":\"Extending Effective Target Width in Fitts' Law to a Two-Dimensional Pointing Task\",\"authors\":\"A. Murata\",\"doi\":\"10.1207/S153275901102_4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research was designed to develop the definition of effective target width in a 2-dimensional pointing task. The idea of effective target width in a 1-dimensional pointing task was extended to effective target width in a 2-dimensional pointing task using the 2-dimensional joint probability density function. The validity of this theoretical definition was empirically verified. In the experiment, the moving direction of the mouse was from lower left to upper right. The approach angle was fixed to 45°. The fit of conventional and new models to the experimental data was compared by means of contribution of the regression line that showed the relation between the index of difficulty and the mean pointing time. As a result, we could obtain higher values of contribution for the modeling that introduced effective target width than that for the conventional modeling without it. In conclusion, the proposed 2-dimensional definition of effective target width may be promising for predicting and modeling pointing t...\",\"PeriodicalId\":208962,\"journal\":{\"name\":\"Int. J. Hum. Comput. Interact.\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Hum. Comput. Interact.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1207/S153275901102_4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Hum. Comput. Interact.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1207/S153275901102_4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extending Effective Target Width in Fitts' Law to a Two-Dimensional Pointing Task
This research was designed to develop the definition of effective target width in a 2-dimensional pointing task. The idea of effective target width in a 1-dimensional pointing task was extended to effective target width in a 2-dimensional pointing task using the 2-dimensional joint probability density function. The validity of this theoretical definition was empirically verified. In the experiment, the moving direction of the mouse was from lower left to upper right. The approach angle was fixed to 45°. The fit of conventional and new models to the experimental data was compared by means of contribution of the regression line that showed the relation between the index of difficulty and the mean pointing time. As a result, we could obtain higher values of contribution for the modeling that introduced effective target width than that for the conventional modeling without it. In conclusion, the proposed 2-dimensional definition of effective target width may be promising for predicting and modeling pointing t...