构建电力消费需求响应模型

J. Hobby
{"title":"构建电力消费需求响应模型","authors":"J. Hobby","doi":"10.1109/SMARTGRID.2010.5622075","DOIUrl":null,"url":null,"abstract":"Economic models should be based on real data if possible, and one of the most extensive data sources for energy consumption is the U.S. government's Residential Energy Consumption Survey (RECS). The survey results indicate what terms are most important, and they provide much of the data necessary to fit parameters of a demand function, but they neglect seasonal variations in prices and heating and cooling requirements. With some difficulty, weather information and seasonal price variations from other sources can be merged with RECS data. A further complication is the need for monthly data and for cooling and heating degree data relative to various base temperatures. We deal with these issues, explore various demand functions, and use nonlinear l east squares to fit their parameters to the data.","PeriodicalId":106908,"journal":{"name":"2010 First IEEE International Conference on Smart Grid Communications","volume":"202 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Constructing Demand Response Models for Electric Power Consumption\",\"authors\":\"J. Hobby\",\"doi\":\"10.1109/SMARTGRID.2010.5622075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Economic models should be based on real data if possible, and one of the most extensive data sources for energy consumption is the U.S. government's Residential Energy Consumption Survey (RECS). The survey results indicate what terms are most important, and they provide much of the data necessary to fit parameters of a demand function, but they neglect seasonal variations in prices and heating and cooling requirements. With some difficulty, weather information and seasonal price variations from other sources can be merged with RECS data. A further complication is the need for monthly data and for cooling and heating degree data relative to various base temperatures. We deal with these issues, explore various demand functions, and use nonlinear l east squares to fit their parameters to the data.\",\"PeriodicalId\":106908,\"journal\":{\"name\":\"2010 First IEEE International Conference on Smart Grid Communications\",\"volume\":\"202 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 First IEEE International Conference on Smart Grid Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMARTGRID.2010.5622075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 First IEEE International Conference on Smart Grid Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTGRID.2010.5622075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

如果可能的话,经济模型应该基于真实数据,而能源消耗最广泛的数据来源之一是美国政府的住宅能源消耗调查(RECS)。调查结果表明哪些条款是最重要的,它们提供了许多必要的数据来拟合需求函数的参数,但它们忽略了价格和供暖和制冷需求的季节性变化。从其他来源获得的天气信息和季节性价格变化可以与RECS数据合并,但存在一些困难。更复杂的是需要每月的数据以及相对于各种基本温度的冷却和加热度数据。我们处理这些问题,探索各种需求函数,并使用非线性东平方拟合其参数的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Constructing Demand Response Models for Electric Power Consumption
Economic models should be based on real data if possible, and one of the most extensive data sources for energy consumption is the U.S. government's Residential Energy Consumption Survey (RECS). The survey results indicate what terms are most important, and they provide much of the data necessary to fit parameters of a demand function, but they neglect seasonal variations in prices and heating and cooling requirements. With some difficulty, weather information and seasonal price variations from other sources can be merged with RECS data. A further complication is the need for monthly data and for cooling and heating degree data relative to various base temperatures. We deal with these issues, explore various demand functions, and use nonlinear l east squares to fit their parameters to the data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信