{"title":"一类非标准生长kirchhoff型方程解的存在性","authors":"Z. Yucedag, R. Ayazoğlu","doi":"10.13189/UJAM.2014.020504","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the existence of solutions to a class p(x)-Kirchhoff type problem with Dirichlet boundary data. Using a direct variational approach and the theory of the variable exponent Lebesque-Sobolev spaces, we establish some conditions that ensure the existence of nontrivial weak solutions.","PeriodicalId":372283,"journal":{"name":"Universal Journal of Applied Mathematics","volume":"187 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Existence of Solutions for a Class of Kirchhoff-type Equation with Nonstandard Growth\",\"authors\":\"Z. Yucedag, R. Ayazoğlu\",\"doi\":\"10.13189/UJAM.2014.020504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the existence of solutions to a class p(x)-Kirchhoff type problem with Dirichlet boundary data. Using a direct variational approach and the theory of the variable exponent Lebesque-Sobolev spaces, we establish some conditions that ensure the existence of nontrivial weak solutions.\",\"PeriodicalId\":372283,\"journal\":{\"name\":\"Universal Journal of Applied Mathematics\",\"volume\":\"187 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Universal Journal of Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13189/UJAM.2014.020504\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/UJAM.2014.020504","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Existence of Solutions for a Class of Kirchhoff-type Equation with Nonstandard Growth
This paper is concerned with the existence of solutions to a class p(x)-Kirchhoff type problem with Dirichlet boundary data. Using a direct variational approach and the theory of the variable exponent Lebesque-Sobolev spaces, we establish some conditions that ensure the existence of nontrivial weak solutions.