微非均质介质建模中的渐近均质化和分数阶计算:介绍了功能分级、微周期和线性棒的情况

Roberto Martins Da Silva Décio Júnior, Adriano De Cezaro, L. D. Pérez-Fernández
{"title":"微非均质介质建模中的渐近均质化和分数阶计算:介绍了功能分级、微周期和线性棒的情况","authors":"Roberto Martins Da Silva Décio Júnior, Adriano De Cezaro, L. D. Pérez-Fernández","doi":"10.14295/vetor.v32i1.13759","DOIUrl":null,"url":null,"abstract":"O estudo de materiais com estrutura complexa, como os funcionalmente graduados, tem cada vez mais chamado a atenção, seja pela dificuldade em obter os resultados ou pela importância de tais materiais em diversos ramos da indústria. Neste trabalho, o Método de Homogeneização Assintótica e ferramentas do Cálculo Fracionário são aplicados para modelar o comportamento um material micro-heterogêneo, como os funcionalmente graduados. O interesse principal desse trabalho é encontrar uma forma de associar ambas metodologias, que têm fornecido bons resultados quando aplicadas em problemas envolvendo estruturas complexas, mas de forma separada. Os resultados obtidos mostram que cada metodologia reproduz diferentes aspectos do fenômeno: a Homogenização está nos detalhes da microestrutura, enquanto que a derivada fracionária se ocupa de um comportamento macroscópico, cuja natureza pode ser dissipativa. Aqui estão resultados importantes, porém uma abordagem mais profunda e diversificada é necessária a fim de fornecer conclusões mais fortes e generalizadas acerca do tema.","PeriodicalId":258655,"journal":{"name":"VETOR - Revista de Ciências Exatas e Engenharias","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homogeneização Assintótica e Cálculo Fracionário na modelagem de meios micro-heterogêneos: uma introdução com o caso de uma barra funcionalmente graduada, microperiódica e linear\",\"authors\":\"Roberto Martins Da Silva Décio Júnior, Adriano De Cezaro, L. D. Pérez-Fernández\",\"doi\":\"10.14295/vetor.v32i1.13759\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"O estudo de materiais com estrutura complexa, como os funcionalmente graduados, tem cada vez mais chamado a atenção, seja pela dificuldade em obter os resultados ou pela importância de tais materiais em diversos ramos da indústria. Neste trabalho, o Método de Homogeneização Assintótica e ferramentas do Cálculo Fracionário são aplicados para modelar o comportamento um material micro-heterogêneo, como os funcionalmente graduados. O interesse principal desse trabalho é encontrar uma forma de associar ambas metodologias, que têm fornecido bons resultados quando aplicadas em problemas envolvendo estruturas complexas, mas de forma separada. Os resultados obtidos mostram que cada metodologia reproduz diferentes aspectos do fenômeno: a Homogenização está nos detalhes da microestrutura, enquanto que a derivada fracionária se ocupa de um comportamento macroscópico, cuja natureza pode ser dissipativa. Aqui estão resultados importantes, porém uma abordagem mais profunda e diversificada é necessária a fim de fornecer conclusões mais fortes e generalizadas acerca do tema.\",\"PeriodicalId\":258655,\"journal\":{\"name\":\"VETOR - Revista de Ciências Exatas e Engenharias\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VETOR - Revista de Ciências Exatas e Engenharias\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14295/vetor.v32i1.13759\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VETOR - Revista de Ciências Exatas e Engenharias","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14295/vetor.v32i1.13759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对结构复杂的材料的研究,如功能分级材料,由于获得结果的难度或这些材料在工业各个分支中的重要性,越来越受到关注。在这项工作中,应用渐近均质方法和分数计算工具来模拟微非均质材料的行为,如功能分级材料。这项工作的主要兴趣是找到一种方法来结合这两种方法,当应用于涉及复杂结构的问题时,它们提供了良好的结果,但分开。结果表明,每种方法都再现了现象的不同方面:均质化是微观结构的细节,而分数阶导数处理的是宏观行为,其性质可能是耗散的。这里有一些重要的结果,但需要一个更深入和多样化的方法,以提供更有力和普遍的结论的主题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homogeneização Assintótica e Cálculo Fracionário na modelagem de meios micro-heterogêneos: uma introdução com o caso de uma barra funcionalmente graduada, microperiódica e linear
O estudo de materiais com estrutura complexa, como os funcionalmente graduados, tem cada vez mais chamado a atenção, seja pela dificuldade em obter os resultados ou pela importância de tais materiais em diversos ramos da indústria. Neste trabalho, o Método de Homogeneização Assintótica e ferramentas do Cálculo Fracionário são aplicados para modelar o comportamento um material micro-heterogêneo, como os funcionalmente graduados. O interesse principal desse trabalho é encontrar uma forma de associar ambas metodologias, que têm fornecido bons resultados quando aplicadas em problemas envolvendo estruturas complexas, mas de forma separada. Os resultados obtidos mostram que cada metodologia reproduz diferentes aspectos do fenômeno: a Homogenização está nos detalhes da microestrutura, enquanto que a derivada fracionária se ocupa de um comportamento macroscópico, cuja natureza pode ser dissipativa. Aqui estão resultados importantes, porém uma abordagem mais profunda e diversificada é necessária a fim de fornecer conclusões mais fortes e generalizadas acerca do tema.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信