{"title":"基于模型的智能微电网锂离子电池退化评估","authors":"Björn Weißhar, W. Bessler","doi":"10.1109/ICSGCE.2015.7454284","DOIUrl":null,"url":null,"abstract":"Battery degradation is a complex physicochemical process that strongly depends on operating conditions and environment. We present a model-based analysis of lithium-ion battery degradation in smart microgrids, in particular, a single-family house and an office tract with photovoltaics generator. We use a multi-scale multi-physics model of a graphite/lithium iron phosphate (LiFePO4, LFP) cell including SEI formation as ageing mechanism. The cell-level model is dynamically coupled to a system-level model consisting of photovoltaics, inverter, power consumption profiles, grid interaction, and energy management system, fed with historic weather data. The behavior of the cell in terms of degradation propensity, performance, state of charge and other internal states is predicted over an annual operation cycle. As result, we have identified a peak in degradation rate during the battery charging process, caused by charging overpotentials. Ageing strongly depends on the load situation, where the predicted annual capacity fade is 1.9 % for the single-family house and only 1.3 % for the office tract.","PeriodicalId":134414,"journal":{"name":"2015 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE)","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Model-based degradation assessment of lithium-ion batteries in a smart microgrid\",\"authors\":\"Björn Weißhar, W. Bessler\",\"doi\":\"10.1109/ICSGCE.2015.7454284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Battery degradation is a complex physicochemical process that strongly depends on operating conditions and environment. We present a model-based analysis of lithium-ion battery degradation in smart microgrids, in particular, a single-family house and an office tract with photovoltaics generator. We use a multi-scale multi-physics model of a graphite/lithium iron phosphate (LiFePO4, LFP) cell including SEI formation as ageing mechanism. The cell-level model is dynamically coupled to a system-level model consisting of photovoltaics, inverter, power consumption profiles, grid interaction, and energy management system, fed with historic weather data. The behavior of the cell in terms of degradation propensity, performance, state of charge and other internal states is predicted over an annual operation cycle. As result, we have identified a peak in degradation rate during the battery charging process, caused by charging overpotentials. Ageing strongly depends on the load situation, where the predicted annual capacity fade is 1.9 % for the single-family house and only 1.3 % for the office tract.\",\"PeriodicalId\":134414,\"journal\":{\"name\":\"2015 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE)\",\"volume\":\"144 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSGCE.2015.7454284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Smart Grid and Clean Energy Technologies (ICSGCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSGCE.2015.7454284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Model-based degradation assessment of lithium-ion batteries in a smart microgrid
Battery degradation is a complex physicochemical process that strongly depends on operating conditions and environment. We present a model-based analysis of lithium-ion battery degradation in smart microgrids, in particular, a single-family house and an office tract with photovoltaics generator. We use a multi-scale multi-physics model of a graphite/lithium iron phosphate (LiFePO4, LFP) cell including SEI formation as ageing mechanism. The cell-level model is dynamically coupled to a system-level model consisting of photovoltaics, inverter, power consumption profiles, grid interaction, and energy management system, fed with historic weather data. The behavior of the cell in terms of degradation propensity, performance, state of charge and other internal states is predicted over an annual operation cycle. As result, we have identified a peak in degradation rate during the battery charging process, caused by charging overpotentials. Ageing strongly depends on the load situation, where the predicted annual capacity fade is 1.9 % for the single-family house and only 1.3 % for the office tract.