基于GMM-SVM的文本依赖说话人识别新研究

Hanwu Sun, Kong-Aik Lee, B. Ma
{"title":"基于GMM-SVM的文本依赖说话人识别新研究","authors":"Hanwu Sun, Kong-Aik Lee, B. Ma","doi":"10.1109/ICASSP.2015.7178761","DOIUrl":null,"url":null,"abstract":"This paper presents a new approach and the study of GMM-SVM system for text-dependent speaker recognition on scenario of the fixed pass-phrases. The uniform-split content-based GMM-SVM system is proposed and applied to text-dependent speaker evaluation. We conducted detailed study of the proposed method compared to the baseline GMM-SVM system on the RSR2015 database, which has been designed and collected for the evaluation of text-dependent speaker verification system. The experiment results show that the new approach can significantly reduce the detection error of the target-wrong error type (i.e., target speaker with wrong pass-phrase) while maintaining a low detection error for both imposter-correct and imposter-wrong error types (i.e., imposter with correct pass-phrase and imposter with wrong pass-phrase). We also show that score normalization could be applied with respect to the imposter-wrong distribution as opposed to the imposter-correct distribution.","PeriodicalId":117666,"journal":{"name":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"A new study of GMM-SVM system for text-dependent speaker recognition\",\"authors\":\"Hanwu Sun, Kong-Aik Lee, B. Ma\",\"doi\":\"10.1109/ICASSP.2015.7178761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new approach and the study of GMM-SVM system for text-dependent speaker recognition on scenario of the fixed pass-phrases. The uniform-split content-based GMM-SVM system is proposed and applied to text-dependent speaker evaluation. We conducted detailed study of the proposed method compared to the baseline GMM-SVM system on the RSR2015 database, which has been designed and collected for the evaluation of text-dependent speaker verification system. The experiment results show that the new approach can significantly reduce the detection error of the target-wrong error type (i.e., target speaker with wrong pass-phrase) while maintaining a low detection error for both imposter-correct and imposter-wrong error types (i.e., imposter with correct pass-phrase and imposter with wrong pass-phrase). We also show that score normalization could be applied with respect to the imposter-wrong distribution as opposed to the imposter-correct distribution.\",\"PeriodicalId\":117666,\"journal\":{\"name\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2015.7178761\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2015.7178761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一种新的基于GMM-SVM的文本依赖说话人识别方法,并对该方法进行了研究。提出了基于均匀分割内容的GMM-SVM系统,并将其应用于依赖文本的说话人评价中。我们将提出的方法与RSR2015数据库上的基线GMM-SVM系统进行了详细的研究,RSR2015数据库是为评估文本依赖的说话人验证系统而设计和收集的。实验结果表明,新方法可以显著降低目标错误错误类型(即目标说话人密码短语错误)的检测误差,同时对冒名者-正确和冒名者-错误错误类型(即冒名者密码短语正确和冒名者密码短语错误)都保持较低的检测误差。我们还表明,分数归一化可以应用于冒名顶替者错误分布,而不是冒名顶替者正确分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new study of GMM-SVM system for text-dependent speaker recognition
This paper presents a new approach and the study of GMM-SVM system for text-dependent speaker recognition on scenario of the fixed pass-phrases. The uniform-split content-based GMM-SVM system is proposed and applied to text-dependent speaker evaluation. We conducted detailed study of the proposed method compared to the baseline GMM-SVM system on the RSR2015 database, which has been designed and collected for the evaluation of text-dependent speaker verification system. The experiment results show that the new approach can significantly reduce the detection error of the target-wrong error type (i.e., target speaker with wrong pass-phrase) while maintaining a low detection error for both imposter-correct and imposter-wrong error types (i.e., imposter with correct pass-phrase and imposter with wrong pass-phrase). We also show that score normalization could be applied with respect to the imposter-wrong distribution as opposed to the imposter-correct distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信