对称多项式在传递矩阵中的缩放

Y. Belyayev
{"title":"对称多项式在传递矩阵中的缩放","authors":"Y. Belyayev","doi":"10.1109/DD.2013.6712796","DOIUrl":null,"url":null,"abstract":"The new method of the matrix exponential exp (Wz) computation is based on the use of symmetric polynomials of n-th order in combination with scaling matrix W. Calculation algorithm uses a new type of recurrence relations, which were obtained for symmetric polynomials. Evaluation of the scaling parameter, which provides a reliable calculation of the matrix exponential with admissible truncation error, is made. Method of minimizing roundoff errors in the calculation of high powers of matrices is suggested.","PeriodicalId":340014,"journal":{"name":"Proceedings of the International Conference Days on Diffraction 2013","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Symmetric polynomials in the transfer matrix scaling\",\"authors\":\"Y. Belyayev\",\"doi\":\"10.1109/DD.2013.6712796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The new method of the matrix exponential exp (Wz) computation is based on the use of symmetric polynomials of n-th order in combination with scaling matrix W. Calculation algorithm uses a new type of recurrence relations, which were obtained for symmetric polynomials. Evaluation of the scaling parameter, which provides a reliable calculation of the matrix exponential with admissible truncation error, is made. Method of minimizing roundoff errors in the calculation of high powers of matrices is suggested.\",\"PeriodicalId\":340014,\"journal\":{\"name\":\"Proceedings of the International Conference Days on Diffraction 2013\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference Days on Diffraction 2013\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DD.2013.6712796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference Days on Diffraction 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DD.2013.6712796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

矩阵指数exp (Wz)计算的新方法是利用n阶对称多项式与标度矩阵w相结合的方法。计算算法采用了一种新的递归关系,该递归关系是对对称多项式得到的。对标度参数进行了评估,从而在允许截断误差的情况下提供了矩阵指数的可靠计算。提出了在计算高次矩阵时减小舍入误差的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetric polynomials in the transfer matrix scaling
The new method of the matrix exponential exp (Wz) computation is based on the use of symmetric polynomials of n-th order in combination with scaling matrix W. Calculation algorithm uses a new type of recurrence relations, which were obtained for symmetric polynomials. Evaluation of the scaling parameter, which provides a reliable calculation of the matrix exponential with admissible truncation error, is made. Method of minimizing roundoff errors in the calculation of high powers of matrices is suggested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信