{"title":"使用缩放触摸手势的案例研究:训练数据集的大小如何影响智能手机用户年龄估计的准确性?","authors":"M. Hossain","doi":"10.1109/SMARTCOMP58114.2023.00044","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on improving the age estimation accuracy on smartphones. Estimating a smartphone user’s age has several applications such as protecting our children online by filtering age-inappropriate contents, providing a customized e-commerce experience, etc. However, accuracy of the the state-of-the-art age estimation techniques that use touch behavior on smartphones is still limited because of the lack of sufficient amount of training data. We perform rigorous experiments using zoom gestures on smartphones and demonstrate that increasing the amount of training data can significantly improve the age estimation accuracy. Based on the findings in this study, we recommend creating a large touch dynamics-based age estimation data set so that more accurate age estimation models can be built and in turn, can be used more confidently.","PeriodicalId":163556,"journal":{"name":"2023 IEEE International Conference on Smart Computing (SMARTCOMP)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Case Study Using Zoom Touch Gestures: How Does the Size of a Training Dataset Impact User’s Age Estimation Accuracy in Smartphones?\",\"authors\":\"M. Hossain\",\"doi\":\"10.1109/SMARTCOMP58114.2023.00044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we focus on improving the age estimation accuracy on smartphones. Estimating a smartphone user’s age has several applications such as protecting our children online by filtering age-inappropriate contents, providing a customized e-commerce experience, etc. However, accuracy of the the state-of-the-art age estimation techniques that use touch behavior on smartphones is still limited because of the lack of sufficient amount of training data. We perform rigorous experiments using zoom gestures on smartphones and demonstrate that increasing the amount of training data can significantly improve the age estimation accuracy. Based on the findings in this study, we recommend creating a large touch dynamics-based age estimation data set so that more accurate age estimation models can be built and in turn, can be used more confidently.\",\"PeriodicalId\":163556,\"journal\":{\"name\":\"2023 IEEE International Conference on Smart Computing (SMARTCOMP)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Smart Computing (SMARTCOMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMARTCOMP58114.2023.00044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Smart Computing (SMARTCOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP58114.2023.00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Case Study Using Zoom Touch Gestures: How Does the Size of a Training Dataset Impact User’s Age Estimation Accuracy in Smartphones?
In this paper, we focus on improving the age estimation accuracy on smartphones. Estimating a smartphone user’s age has several applications such as protecting our children online by filtering age-inappropriate contents, providing a customized e-commerce experience, etc. However, accuracy of the the state-of-the-art age estimation techniques that use touch behavior on smartphones is still limited because of the lack of sufficient amount of training data. We perform rigorous experiments using zoom gestures on smartphones and demonstrate that increasing the amount of training data can significantly improve the age estimation accuracy. Based on the findings in this study, we recommend creating a large touch dynamics-based age estimation data set so that more accurate age estimation models can be built and in turn, can be used more confidently.