考虑悬架非线性刚度的环形微机械陀螺仪动力学

A. Maslov, D. A. Maslov, I. Merkuryev, V. V. Podalkov
{"title":"考虑悬架非线性刚度的环形微机械陀螺仪动力学","authors":"A. Maslov, D. A. Maslov, I. Merkuryev, V. V. Podalkov","doi":"10.23919/ICINS.2019.8769369","DOIUrl":null,"url":null,"abstract":"A micromechanical gyroscope with a ring resonator and magnetoelectric control sensors is considered. By using Hamilton variational principle, the dynamics equations of the ring are obtained, taking into account dissipation, nonlinear stiffness of torsions, and applied Ampere forces. By using the Bubnov-Galerkin method, a system of nonlinear differential equations that describes the resonator dynamics in the single-mode approximation is obtained. The mathematical model of the gyroscope in the mode of forced oscillations taking into account the nonlinear stiffness of torsion bars is derived. It is shown that torsion bars of elastic suspension cause cubic nonlinearity as well as a shift of the oscillation frequency and gyroscope drift.","PeriodicalId":108493,"journal":{"name":"2019 26th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS)","volume":"172 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Dynamics of the Ring Micromechanical Gyroscope Taking into Account the Nonlinear Stiffness of the Suspension\",\"authors\":\"A. Maslov, D. A. Maslov, I. Merkuryev, V. V. Podalkov\",\"doi\":\"10.23919/ICINS.2019.8769369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A micromechanical gyroscope with a ring resonator and magnetoelectric control sensors is considered. By using Hamilton variational principle, the dynamics equations of the ring are obtained, taking into account dissipation, nonlinear stiffness of torsions, and applied Ampere forces. By using the Bubnov-Galerkin method, a system of nonlinear differential equations that describes the resonator dynamics in the single-mode approximation is obtained. The mathematical model of the gyroscope in the mode of forced oscillations taking into account the nonlinear stiffness of torsion bars is derived. It is shown that torsion bars of elastic suspension cause cubic nonlinearity as well as a shift of the oscillation frequency and gyroscope drift.\",\"PeriodicalId\":108493,\"journal\":{\"name\":\"2019 26th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS)\",\"volume\":\"172 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 26th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ICINS.2019.8769369\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 26th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICINS.2019.8769369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

研究了一种具有环形谐振器和磁电控制传感器的微机械陀螺仪。利用Hamilton变分原理,得到了考虑耗散、扭转非线性刚度和施加安培力的环的动力学方程。利用布布诺夫-伽辽金方法,得到了在单模近似下描述谐振腔动力学的非线性微分方程组。建立了考虑扭杆非线性刚度的受迫振动陀螺仪的数学模型。结果表明,弹性悬架的扭力杆不仅引起三次非线性,而且引起振动频率的偏移和陀螺漂移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamics of the Ring Micromechanical Gyroscope Taking into Account the Nonlinear Stiffness of the Suspension
A micromechanical gyroscope with a ring resonator and magnetoelectric control sensors is considered. By using Hamilton variational principle, the dynamics equations of the ring are obtained, taking into account dissipation, nonlinear stiffness of torsions, and applied Ampere forces. By using the Bubnov-Galerkin method, a system of nonlinear differential equations that describes the resonator dynamics in the single-mode approximation is obtained. The mathematical model of the gyroscope in the mode of forced oscillations taking into account the nonlinear stiffness of torsion bars is derived. It is shown that torsion bars of elastic suspension cause cubic nonlinearity as well as a shift of the oscillation frequency and gyroscope drift.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信