光度图像失真下的并行立体

G. Gimel'farb, Jiang Li, John Morris, P. Delmas
{"title":"光度图像失真下的并行立体","authors":"G. Gimel'farb, Jiang Li, John Morris, P. Delmas","doi":"10.1109/ICPR.2006.401","DOIUrl":null,"url":null,"abstract":"We have improved our concurrent stereo matching (CSM) algorithm, which abandons the search for 'best' matches and determine matches that lie within admissible ranges using a noise model. We estimate photometric deviations between corresponding regions of stereo pairs with photometric transformations and mismatched or occluded regions. We allow for global, disparity dependent contrast and offset (gain and dark noise) distortions as well as multiple outliers. Noise is estimated for each pixel at each disparity level and the CSM framework applied. Outliers are eliminated with a statistical model and likely matching volumes identified. Then, starting in the foreground, the volumes are explored to select mutually consistent optical surfaces. Finally, local, not global, surface continuity and visibility constraints are applied to generate a disparity map. This approach compares well with other matching algorithms: the more realistic matching model allows for signal contrast and offset variations over the whole image","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Concurrent Stereo under Photometric Image Distortions\",\"authors\":\"G. Gimel'farb, Jiang Li, John Morris, P. Delmas\",\"doi\":\"10.1109/ICPR.2006.401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have improved our concurrent stereo matching (CSM) algorithm, which abandons the search for 'best' matches and determine matches that lie within admissible ranges using a noise model. We estimate photometric deviations between corresponding regions of stereo pairs with photometric transformations and mismatched or occluded regions. We allow for global, disparity dependent contrast and offset (gain and dark noise) distortions as well as multiple outliers. Noise is estimated for each pixel at each disparity level and the CSM framework applied. Outliers are eliminated with a statistical model and likely matching volumes identified. Then, starting in the foreground, the volumes are explored to select mutually consistent optical surfaces. Finally, local, not global, surface continuity and visibility constraints are applied to generate a disparity map. This approach compares well with other matching algorithms: the more realistic matching model allows for signal contrast and offset variations over the whole image\",\"PeriodicalId\":236033,\"journal\":{\"name\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"18th International Conference on Pattern Recognition (ICPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2006.401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们改进了并发立体匹配(CSM)算法,该算法放弃搜索“最佳”匹配,并使用噪声模型确定在可接受范围内的匹配。我们估算了具有光度变换的立体对的相应区域和不匹配或遮挡区域之间的光度偏差。我们允许全局,视差依赖的对比度和偏移(增益和暗噪声)失真以及多个异常值。在每个视差水平上估计每个像素的噪声,并应用CSM框架。用统计模型和可能匹配的体积来消除异常值。然后,从前景开始,探索体块以选择相互一致的光学表面。最后,应用局部而非全局的表面连续性和可见性约束来生成视差图。这种方法与其他匹配算法相比效果更好:更真实的匹配模型允许整个图像的信号对比度和偏移变化
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Concurrent Stereo under Photometric Image Distortions
We have improved our concurrent stereo matching (CSM) algorithm, which abandons the search for 'best' matches and determine matches that lie within admissible ranges using a noise model. We estimate photometric deviations between corresponding regions of stereo pairs with photometric transformations and mismatched or occluded regions. We allow for global, disparity dependent contrast and offset (gain and dark noise) distortions as well as multiple outliers. Noise is estimated for each pixel at each disparity level and the CSM framework applied. Outliers are eliminated with a statistical model and likely matching volumes identified. Then, starting in the foreground, the volumes are explored to select mutually consistent optical surfaces. Finally, local, not global, surface continuity and visibility constraints are applied to generate a disparity map. This approach compares well with other matching algorithms: the more realistic matching model allows for signal contrast and offset variations over the whole image
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信