非忠实数据分布下的马尔可夫毯子特征选择

Kui Yu, Xindong Wu, Zan Zhang, Yang Mu, Hao Wang, W. Ding
{"title":"非忠实数据分布下的马尔可夫毯子特征选择","authors":"Kui Yu, Xindong Wu, Zan Zhang, Yang Mu, Hao Wang, W. Ding","doi":"10.1109/ICDM.2013.154","DOIUrl":null,"url":null,"abstract":"In faithful Bayesian networks, the Markov blanket of the class attribute is a unique and minimal feature subset for optimal feature selection. However, little attention has been paid to Markov blanket feature selection in a non-faithful environment which widely exists in the real world. To tackle this issue, in this paper, we deal with non-faithful data distributions and propose the concept of representative sets instead of Markov blankets. With a standard sparse group lasso for selection of features from the representative sets, we design an effective algorithm, SRS, for Markov blanket feature Selection via Representative Sets with non-faithful data distributions. Empirical studies demonstrate that SRS outperforms the state-of-the-art Markov blanket feature selectors and other well-established feature selection methods.","PeriodicalId":308676,"journal":{"name":"2013 IEEE 13th International Conference on Data Mining","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Markov Blanket Feature Selection with Non-faithful Data Distributions\",\"authors\":\"Kui Yu, Xindong Wu, Zan Zhang, Yang Mu, Hao Wang, W. Ding\",\"doi\":\"10.1109/ICDM.2013.154\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In faithful Bayesian networks, the Markov blanket of the class attribute is a unique and minimal feature subset for optimal feature selection. However, little attention has been paid to Markov blanket feature selection in a non-faithful environment which widely exists in the real world. To tackle this issue, in this paper, we deal with non-faithful data distributions and propose the concept of representative sets instead of Markov blankets. With a standard sparse group lasso for selection of features from the representative sets, we design an effective algorithm, SRS, for Markov blanket feature Selection via Representative Sets with non-faithful data distributions. Empirical studies demonstrate that SRS outperforms the state-of-the-art Markov blanket feature selectors and other well-established feature selection methods.\",\"PeriodicalId\":308676,\"journal\":{\"name\":\"2013 IEEE 13th International Conference on Data Mining\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 13th International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2013.154\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 13th International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2013.154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在忠实贝叶斯网络中,类属性的马尔可夫包层是用于最优特征选择的唯一最小特征子集。然而,现实世界中广泛存在的非忠实环境下的马尔可夫毯子特征选择问题却很少得到关注。为了解决这个问题,在本文中,我们处理了非忠实数据分布,并提出了代表集的概念,而不是马尔可夫毯。利用标准的稀疏组套索从代表集中选择特征,设计了一种有效的SRS算法,用于通过具有非忠实数据分布的代表集进行马尔可夫毯子特征选择。实证研究表明,SRS优于最先进的马尔可夫毯子特征选择器和其他成熟的特征选择方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Markov Blanket Feature Selection with Non-faithful Data Distributions
In faithful Bayesian networks, the Markov blanket of the class attribute is a unique and minimal feature subset for optimal feature selection. However, little attention has been paid to Markov blanket feature selection in a non-faithful environment which widely exists in the real world. To tackle this issue, in this paper, we deal with non-faithful data distributions and propose the concept of representative sets instead of Markov blankets. With a standard sparse group lasso for selection of features from the representative sets, we design an effective algorithm, SRS, for Markov blanket feature Selection via Representative Sets with non-faithful data distributions. Empirical studies demonstrate that SRS outperforms the state-of-the-art Markov blanket feature selectors and other well-established feature selection methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信