非整数延迟对超可靠系统测距精度的影响

Mohammad H. Soliman, S. Sand, M. Schmidhammer, E. Staudinger
{"title":"非整数延迟对超可靠系统测距精度的影响","authors":"Mohammad H. Soliman, S. Sand, M. Schmidhammer, E. Staudinger","doi":"10.1109/ICL-GNSS.2017.8376239","DOIUrl":null,"url":null,"abstract":"Ultra-reliable communication systems are drawing a lot of attention due to the rising demand on new wireless technologies for safety critical applications. Many of these applications require ultra-reliable distance estimation between the communicating nodes. Automatic coupling between train wagons is one of the scenarios where ultra-reliable communication and ranging at short distances is required. The main objective of this paper is to define a theoretical channel model for the aforementioned scenario, to define a proper discrete equivalence of the communication system model, and to derive Cramer Rao Lower Bounds for ranging accuracy. Ranging accuracy simulation results are provided using three systems: ITS-G5, IR- UWB, and a proposed 5G wide band system operating in the mm-Wave frequency band. We show from the results that the proposed mm-Wave system is suitable for ultra-reliable ranging at short distances.","PeriodicalId":330366,"journal":{"name":"2017 International Conference on Localization and GNSS (ICL-GNSS)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of non-integer delay on ranging accuracy for ultra-reliable systems\",\"authors\":\"Mohammad H. Soliman, S. Sand, M. Schmidhammer, E. Staudinger\",\"doi\":\"10.1109/ICL-GNSS.2017.8376239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultra-reliable communication systems are drawing a lot of attention due to the rising demand on new wireless technologies for safety critical applications. Many of these applications require ultra-reliable distance estimation between the communicating nodes. Automatic coupling between train wagons is one of the scenarios where ultra-reliable communication and ranging at short distances is required. The main objective of this paper is to define a theoretical channel model for the aforementioned scenario, to define a proper discrete equivalence of the communication system model, and to derive Cramer Rao Lower Bounds for ranging accuracy. Ranging accuracy simulation results are provided using three systems: ITS-G5, IR- UWB, and a proposed 5G wide band system operating in the mm-Wave frequency band. We show from the results that the proposed mm-Wave system is suitable for ultra-reliable ranging at short distances.\",\"PeriodicalId\":330366,\"journal\":{\"name\":\"2017 International Conference on Localization and GNSS (ICL-GNSS)\",\"volume\":\"89 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Localization and GNSS (ICL-GNSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICL-GNSS.2017.8376239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Localization and GNSS (ICL-GNSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICL-GNSS.2017.8376239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于对安全关键应用的新无线技术的需求不断增长,超可靠通信系统引起了人们的广泛关注。这些应用程序中的许多都需要通信节点之间的超可靠距离估计。列车车厢之间的自动耦合是需要超可靠通信和短距离测距的场景之一。本文的主要目标是为上述场景定义一个理论信道模型,定义一个适当的通信系统模型的离散等价,并推导测距精度的Cramer Rao下界。给出了ITS-G5、IR- UWB和拟建的毫米波频段5G宽带系统三种系统的测距精度仿真结果。结果表明,所提出的毫米波系统适用于短距离超可靠测距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of non-integer delay on ranging accuracy for ultra-reliable systems
Ultra-reliable communication systems are drawing a lot of attention due to the rising demand on new wireless technologies for safety critical applications. Many of these applications require ultra-reliable distance estimation between the communicating nodes. Automatic coupling between train wagons is one of the scenarios where ultra-reliable communication and ranging at short distances is required. The main objective of this paper is to define a theoretical channel model for the aforementioned scenario, to define a proper discrete equivalence of the communication system model, and to derive Cramer Rao Lower Bounds for ranging accuracy. Ranging accuracy simulation results are provided using three systems: ITS-G5, IR- UWB, and a proposed 5G wide band system operating in the mm-Wave frequency band. We show from the results that the proposed mm-Wave system is suitable for ultra-reliable ranging at short distances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信