{"title":"对长期活动进行分类的定期快速测试","authors":"Pekka Siirtola, Heli Koskimäki, J. Röning","doi":"10.1109/CIDM.2011.5949426","DOIUrl":null,"url":null,"abstract":"A novel method to classify long-term human activities is presented in this study. The method consists of two parts: quick test and periodic classification. The quick test uses temporal information to improve recognition accuracy, while the periodic classification is based on the assumption that recognized activities are long-term. Periodic quick test (PQT) classification was tested using a data set consisting of six long-term sports exercises. The data were collected from six persons wearing a two-dimensional accelerometer on their wrist. The results show that the presented method is not only faster than a normal method, that does not use temporal information and does not assume that activities are long-term, but also more accurate. The results were compared with a normal sliding window technique which divides signal into smaller sequences and classifies each sequence into one of the six classes. The classification accuracy using a normal method was around 84% while using PQT the recognition rate was over 90%. In addition, the number of classified sequences using a normal method was over six times higher than using PQT.","PeriodicalId":211565,"journal":{"name":"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"220 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Periodic quick test for classifying long-term activities\",\"authors\":\"Pekka Siirtola, Heli Koskimäki, J. Röning\",\"doi\":\"10.1109/CIDM.2011.5949426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel method to classify long-term human activities is presented in this study. The method consists of two parts: quick test and periodic classification. The quick test uses temporal information to improve recognition accuracy, while the periodic classification is based on the assumption that recognized activities are long-term. Periodic quick test (PQT) classification was tested using a data set consisting of six long-term sports exercises. The data were collected from six persons wearing a two-dimensional accelerometer on their wrist. The results show that the presented method is not only faster than a normal method, that does not use temporal information and does not assume that activities are long-term, but also more accurate. The results were compared with a normal sliding window technique which divides signal into smaller sequences and classifies each sequence into one of the six classes. The classification accuracy using a normal method was around 84% while using PQT the recognition rate was over 90%. In addition, the number of classified sequences using a normal method was over six times higher than using PQT.\",\"PeriodicalId\":211565,\"journal\":{\"name\":\"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)\",\"volume\":\"220 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIDM.2011.5949426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2011.5949426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Periodic quick test for classifying long-term activities
A novel method to classify long-term human activities is presented in this study. The method consists of two parts: quick test and periodic classification. The quick test uses temporal information to improve recognition accuracy, while the periodic classification is based on the assumption that recognized activities are long-term. Periodic quick test (PQT) classification was tested using a data set consisting of six long-term sports exercises. The data were collected from six persons wearing a two-dimensional accelerometer on their wrist. The results show that the presented method is not only faster than a normal method, that does not use temporal information and does not assume that activities are long-term, but also more accurate. The results were compared with a normal sliding window technique which divides signal into smaller sequences and classifies each sequence into one of the six classes. The classification accuracy using a normal method was around 84% while using PQT the recognition rate was over 90%. In addition, the number of classified sequences using a normal method was over six times higher than using PQT.