实现片上学习和推理的6.67mW稀疏编码ASIC

J. K. Kim, Phil C. Knag, Thomas Chen, Zhengya Zhang
{"title":"实现片上学习和推理的6.67mW稀疏编码ASIC","authors":"J. K. Kim, Phil C. Knag, Thomas Chen, Zhengya Zhang","doi":"10.1109/VLSIC.2014.6858385","DOIUrl":null,"url":null,"abstract":"A sparse coding ASIC is designed to learn visual receptive fields and infer the sparse representation of images for encoding, feature detection and recognition. 256 leaky integrate-and-fire neurons are connected in a 2-layer network of 2D local grids linked in a 4-stage systolic ring to reduce the communication latency. Spike collisions are kept sparse enough to be tolerated to save power. Memory is divided into a core section to support inference, and an auxiliary section that is only powered on for learning. An approximate learning tracks only significant neuron activities to save memory and power. The 3.06mm2 65nm CMOS ASIC achieves an inference throughput of 1.24Gpixel/s at 1.0V and 310MHz, and on-chip learning can be completed in seconds. Memory supply voltage can be reduced to 440mV to exploit the soft algorithm that tolerates errors, reducing the inference power to 6.67mW for a 140Mpixel/s throughput at 35MHz.","PeriodicalId":381216,"journal":{"name":"2014 Symposium on VLSI Circuits Digest of Technical Papers","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A 6.67mW sparse coding ASIC enabling on-chip learning and inference\",\"authors\":\"J. K. Kim, Phil C. Knag, Thomas Chen, Zhengya Zhang\",\"doi\":\"10.1109/VLSIC.2014.6858385\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A sparse coding ASIC is designed to learn visual receptive fields and infer the sparse representation of images for encoding, feature detection and recognition. 256 leaky integrate-and-fire neurons are connected in a 2-layer network of 2D local grids linked in a 4-stage systolic ring to reduce the communication latency. Spike collisions are kept sparse enough to be tolerated to save power. Memory is divided into a core section to support inference, and an auxiliary section that is only powered on for learning. An approximate learning tracks only significant neuron activities to save memory and power. The 3.06mm2 65nm CMOS ASIC achieves an inference throughput of 1.24Gpixel/s at 1.0V and 310MHz, and on-chip learning can be completed in seconds. Memory supply voltage can be reduced to 440mV to exploit the soft algorithm that tolerates errors, reducing the inference power to 6.67mW for a 140Mpixel/s throughput at 35MHz.\",\"PeriodicalId\":381216,\"journal\":{\"name\":\"2014 Symposium on VLSI Circuits Digest of Technical Papers\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Symposium on VLSI Circuits Digest of Technical Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIC.2014.6858385\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Symposium on VLSI Circuits Digest of Technical Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2014.6858385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

设计了一种稀疏编码专用集成电路,用于学习视觉感受域,推断图像的稀疏表示,用于编码、特征检测和识别。256个漏出的整合与放电神经元被连接在一个由二维局部网格组成的二层网络中,并以一个4级收缩环连接,以减少通信延迟。尖峰碰撞保持得足够稀疏,可以容忍以节省电力。内存分为支持推理的核心部分和仅用于学习的辅助部分。近似学习只跟踪重要的神经元活动以节省记忆和功率。3.06mm2 65nm CMOS ASIC在1.0V和310MHz下实现了1.24Gpixel/s的推理吞吐量,片上学习可在数秒内完成。存储电源电压可以降低到440mV,以利用容忍错误的软算法,将推理功率降低到6.67mW,在35MHz下实现1.4 mpixel /s的吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 6.67mW sparse coding ASIC enabling on-chip learning and inference
A sparse coding ASIC is designed to learn visual receptive fields and infer the sparse representation of images for encoding, feature detection and recognition. 256 leaky integrate-and-fire neurons are connected in a 2-layer network of 2D local grids linked in a 4-stage systolic ring to reduce the communication latency. Spike collisions are kept sparse enough to be tolerated to save power. Memory is divided into a core section to support inference, and an auxiliary section that is only powered on for learning. An approximate learning tracks only significant neuron activities to save memory and power. The 3.06mm2 65nm CMOS ASIC achieves an inference throughput of 1.24Gpixel/s at 1.0V and 310MHz, and on-chip learning can be completed in seconds. Memory supply voltage can be reduced to 440mV to exploit the soft algorithm that tolerates errors, reducing the inference power to 6.67mW for a 140Mpixel/s throughput at 35MHz.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信