面部表情识别的深度学习方法

C. M. M. Refat, N. Azlan
{"title":"面部表情识别的深度学习方法","authors":"C. M. M. Refat, N. Azlan","doi":"10.1109/ICOM47790.2019.8952056","DOIUrl":null,"url":null,"abstract":"Deep learning is very popular methods for facial expression recognition (FER) and classification. Different types of deep learning algorithms have been used for FER such as deep belief network (DBN) and convolutional neural network (CNN). In this paper, we analyze various deep learning methods and their results. We have chosen Deep convolutional neural network as the best algorithms for facial expression detection and classification. In our study, we have tested the algorithm using Japanese Female facial expressions database (JAFFE) datasets by anaconda software. The deep convolution neural networks with JAFFE datasets accuracy rate around 97.01%.","PeriodicalId":415914,"journal":{"name":"2019 7th International Conference on Mechatronics Engineering (ICOM)","volume":"315 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Deep Learning Methods for Facial Expression Recognition\",\"authors\":\"C. M. M. Refat, N. Azlan\",\"doi\":\"10.1109/ICOM47790.2019.8952056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning is very popular methods for facial expression recognition (FER) and classification. Different types of deep learning algorithms have been used for FER such as deep belief network (DBN) and convolutional neural network (CNN). In this paper, we analyze various deep learning methods and their results. We have chosen Deep convolutional neural network as the best algorithms for facial expression detection and classification. In our study, we have tested the algorithm using Japanese Female facial expressions database (JAFFE) datasets by anaconda software. The deep convolution neural networks with JAFFE datasets accuracy rate around 97.01%.\",\"PeriodicalId\":415914,\"journal\":{\"name\":\"2019 7th International Conference on Mechatronics Engineering (ICOM)\",\"volume\":\"315 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 7th International Conference on Mechatronics Engineering (ICOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOM47790.2019.8952056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Conference on Mechatronics Engineering (ICOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOM47790.2019.8952056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

深度学习是一种非常流行的面部表情识别和分类方法。不同类型的深度学习算法已被用于深度学习,如深度信念网络(DBN)和卷积神经网络(CNN)。在本文中,我们分析了各种深度学习方法及其结果。我们选择深度卷积神经网络作为面部表情检测和分类的最佳算法。在我们的研究中,我们使用anaconda软件使用日本女性面部表情数据库(JAFFE)数据集对算法进行了测试。深度卷积神经网络在JAFFE数据集上的准确率约为97.01%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Methods for Facial Expression Recognition
Deep learning is very popular methods for facial expression recognition (FER) and classification. Different types of deep learning algorithms have been used for FER such as deep belief network (DBN) and convolutional neural network (CNN). In this paper, we analyze various deep learning methods and their results. We have chosen Deep convolutional neural network as the best algorithms for facial expression detection and classification. In our study, we have tested the algorithm using Japanese Female facial expressions database (JAFFE) datasets by anaconda software. The deep convolution neural networks with JAFFE datasets accuracy rate around 97.01%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信