具有重复任务调用的分布式实时系统的性能分析

S. Islam, H. Ammar
{"title":"具有重复任务调用的分布式实时系统的性能分析","authors":"S. Islam, H. Ammar","doi":"10.1109/FTCS.1991.146685","DOIUrl":null,"url":null,"abstract":"An algorithm and a methodology for the performability analysis of a class of repairable distributed real-time systems are presented. Distributed real-time workloads generally consist of repetitive concurrent tasks with known cycle and deadline times. The planning cycle of real-time distributed systems, which normally consists of several task invocations, is first identified. A repairable distributed real-time system that can be described by a cyclic Markov reward model between invocation tasks is considered. The performability distribution at the end of the planning cycle is determined by performing repeated convolution of performability densities between task invocations. This convolution operation is efficiently done using the Laguerre coefficients. The algorithm numerically determines both moment and distribution of performability in O(N/sup 3/).<<ETX>>","PeriodicalId":300397,"journal":{"name":"[1991] Digest of Papers. Fault-Tolerant Computing: The Twenty-First International Symposium","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Performability analysis of distributed real-time systems with repetitive task invocation\",\"authors\":\"S. Islam, H. Ammar\",\"doi\":\"10.1109/FTCS.1991.146685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algorithm and a methodology for the performability analysis of a class of repairable distributed real-time systems are presented. Distributed real-time workloads generally consist of repetitive concurrent tasks with known cycle and deadline times. The planning cycle of real-time distributed systems, which normally consists of several task invocations, is first identified. A repairable distributed real-time system that can be described by a cyclic Markov reward model between invocation tasks is considered. The performability distribution at the end of the planning cycle is determined by performing repeated convolution of performability densities between task invocations. This convolution operation is efficiently done using the Laguerre coefficients. The algorithm numerically determines both moment and distribution of performability in O(N/sup 3/).<<ETX>>\",\"PeriodicalId\":300397,\"journal\":{\"name\":\"[1991] Digest of Papers. Fault-Tolerant Computing: The Twenty-First International Symposium\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1991] Digest of Papers. Fault-Tolerant Computing: The Twenty-First International Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FTCS.1991.146685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Digest of Papers. Fault-Tolerant Computing: The Twenty-First International Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FTCS.1991.146685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一类可修分布式实时系统的性能分析算法和方法。分布式实时工作负载通常由具有已知周期和截止时间的重复并发任务组成。首先确定实时分布式系统的规划周期,它通常由几个任务调用组成。考虑了一个可修复的分布式实时系统,该系统可以用调用任务之间的循环马尔可夫奖励模型来描述。计划周期结束时的可执行性分布是通过在任务调用之间执行可执行性密度的重复卷积来确定的。使用拉盖尔系数可以有效地完成卷积运算。该算法在数值上确定了O(N/sup 3/)中性能的矩和分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performability analysis of distributed real-time systems with repetitive task invocation
An algorithm and a methodology for the performability analysis of a class of repairable distributed real-time systems are presented. Distributed real-time workloads generally consist of repetitive concurrent tasks with known cycle and deadline times. The planning cycle of real-time distributed systems, which normally consists of several task invocations, is first identified. A repairable distributed real-time system that can be described by a cyclic Markov reward model between invocation tasks is considered. The performability distribution at the end of the planning cycle is determined by performing repeated convolution of performability densities between task invocations. This convolution operation is efficiently done using the Laguerre coefficients. The algorithm numerically determines both moment and distribution of performability in O(N/sup 3/).<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信