{"title":"doop:加速Map/Reduce集群上的数据迭代应用","authors":"Yi Liang, Guangrui Li, Lei Wang, Yanpeng Hu","doi":"10.1109/PDCAT.2011.32","DOIUrl":null,"url":null,"abstract":"Map/reduce is a popular parallel processing framework for massive-scale data-intensive computing. The data-iterative application is composed of a serials of map/reduce jobs and need to repeatedly process some data files among these jobs. The existing implementation of map/reduce framework focus on perform data processing in a single pass with one map/reduce job and do not directly support the data-iterative applications, particularly in term of the explicit specification of the repeatedly processed data among jobs. In this paper, we propose an extended version of Hadoop map/reduce framework called Dacoop. Dacoop extends Map/Reduce programming interface to specify the repeatedly processed data, introduces the shared memory-based data cache mechanism to cache the data since its first access, and adopts the caching-aware task scheduling so that the cached data can be shared among the map/reduce jobs of data-iterative applications. We evaluate Dacoop on two typical data-iterative applications: k-means clustering and the domain rule reasoning in sementic web, with real and synthetic datasets. Experimental results show that the data-iterative applications can gain better performance on Dacoop than that on Hadoop. The turnaround time of a data-iterative application can be reduced by the maximum of 15.1%.","PeriodicalId":137617,"journal":{"name":"2011 12th International Conference on Parallel and Distributed Computing, Applications and Technologies","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Dacoop: Accelerating Data-Iterative Applications on Map/Reduce Cluster\",\"authors\":\"Yi Liang, Guangrui Li, Lei Wang, Yanpeng Hu\",\"doi\":\"10.1109/PDCAT.2011.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Map/reduce is a popular parallel processing framework for massive-scale data-intensive computing. The data-iterative application is composed of a serials of map/reduce jobs and need to repeatedly process some data files among these jobs. The existing implementation of map/reduce framework focus on perform data processing in a single pass with one map/reduce job and do not directly support the data-iterative applications, particularly in term of the explicit specification of the repeatedly processed data among jobs. In this paper, we propose an extended version of Hadoop map/reduce framework called Dacoop. Dacoop extends Map/Reduce programming interface to specify the repeatedly processed data, introduces the shared memory-based data cache mechanism to cache the data since its first access, and adopts the caching-aware task scheduling so that the cached data can be shared among the map/reduce jobs of data-iterative applications. We evaluate Dacoop on two typical data-iterative applications: k-means clustering and the domain rule reasoning in sementic web, with real and synthetic datasets. Experimental results show that the data-iterative applications can gain better performance on Dacoop than that on Hadoop. The turnaround time of a data-iterative application can be reduced by the maximum of 15.1%.\",\"PeriodicalId\":137617,\"journal\":{\"name\":\"2011 12th International Conference on Parallel and Distributed Computing, Applications and Technologies\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 12th International Conference on Parallel and Distributed Computing, Applications and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDCAT.2011.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 12th International Conference on Parallel and Distributed Computing, Applications and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT.2011.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dacoop: Accelerating Data-Iterative Applications on Map/Reduce Cluster
Map/reduce is a popular parallel processing framework for massive-scale data-intensive computing. The data-iterative application is composed of a serials of map/reduce jobs and need to repeatedly process some data files among these jobs. The existing implementation of map/reduce framework focus on perform data processing in a single pass with one map/reduce job and do not directly support the data-iterative applications, particularly in term of the explicit specification of the repeatedly processed data among jobs. In this paper, we propose an extended version of Hadoop map/reduce framework called Dacoop. Dacoop extends Map/Reduce programming interface to specify the repeatedly processed data, introduces the shared memory-based data cache mechanism to cache the data since its first access, and adopts the caching-aware task scheduling so that the cached data can be shared among the map/reduce jobs of data-iterative applications. We evaluate Dacoop on two typical data-iterative applications: k-means clustering and the domain rule reasoning in sementic web, with real and synthetic datasets. Experimental results show that the data-iterative applications can gain better performance on Dacoop than that on Hadoop. The turnaround time of a data-iterative application can be reduced by the maximum of 15.1%.