{"title":"多维图像的层次张量逼近","authors":"Qing Wu, Tian Xia, Yizhou Yu","doi":"10.1109/ICIP.2007.4379951","DOIUrl":null,"url":null,"abstract":"Visual data comprises of multi-scale and inhomogeneous signals. In this paper, we exploit these characteristics and develop an adaptive data approximation technique based on a hierarchical tensor-based transformation. In this technique, an original multi-dimensional image is transformed into a hierarchy of signals to expose its multi-scale structures. The signal at each level of the hierarchy is further divided into a number of smaller tensors to expose its spatially inhomogeneous structures. These smaller tensors are further transformed and pruned using a collective tensor approximation technique. Experimental results indicate that our technique can achieve higher compression ratios than existing functional approximation methods, including wavelet transforms, wavelet packet transforms and single-level tensor approximation.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Hierarchical Tensor Approximation of Multidimensional Images\",\"authors\":\"Qing Wu, Tian Xia, Yizhou Yu\",\"doi\":\"10.1109/ICIP.2007.4379951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual data comprises of multi-scale and inhomogeneous signals. In this paper, we exploit these characteristics and develop an adaptive data approximation technique based on a hierarchical tensor-based transformation. In this technique, an original multi-dimensional image is transformed into a hierarchy of signals to expose its multi-scale structures. The signal at each level of the hierarchy is further divided into a number of smaller tensors to expose its spatially inhomogeneous structures. These smaller tensors are further transformed and pruned using a collective tensor approximation technique. Experimental results indicate that our technique can achieve higher compression ratios than existing functional approximation methods, including wavelet transforms, wavelet packet transforms and single-level tensor approximation.\",\"PeriodicalId\":131177,\"journal\":{\"name\":\"2007 IEEE International Conference on Image Processing\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2007.4379951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4379951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hierarchical Tensor Approximation of Multidimensional Images
Visual data comprises of multi-scale and inhomogeneous signals. In this paper, we exploit these characteristics and develop an adaptive data approximation technique based on a hierarchical tensor-based transformation. In this technique, an original multi-dimensional image is transformed into a hierarchy of signals to expose its multi-scale structures. The signal at each level of the hierarchy is further divided into a number of smaller tensors to expose its spatially inhomogeneous structures. These smaller tensors are further transformed and pruned using a collective tensor approximation technique. Experimental results indicate that our technique can achieve higher compression ratios than existing functional approximation methods, including wavelet transforms, wavelet packet transforms and single-level tensor approximation.