通过可能性聚类生成隶属函数

R. Krishnapuram
{"title":"通过可能性聚类生成隶属函数","authors":"R. Krishnapuram","doi":"10.1109/FUZZY.1994.343851","DOIUrl":null,"url":null,"abstract":"Possibilistic clustering has been introduced recently to overcome some of the limitations imposed by the constraint used in the fuzzy c-means algorithm. It was shown that possibilistic memberships correspond more closely to the notion of \"typicality\". In this paper, we explore certain interesting properties of possibilistic clustering, In particular, we show that possibilistic clustering can be successfully used to solve two important problems that arise while using fuzzy set theory: i) determination of membership functions, and ii) determination of the number of clusters.<<ETX>>","PeriodicalId":153967,"journal":{"name":"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference","volume":"71 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"86","resultStr":"{\"title\":\"Generation of membership functions via possibilistic clustering\",\"authors\":\"R. Krishnapuram\",\"doi\":\"10.1109/FUZZY.1994.343851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Possibilistic clustering has been introduced recently to overcome some of the limitations imposed by the constraint used in the fuzzy c-means algorithm. It was shown that possibilistic memberships correspond more closely to the notion of \\\"typicality\\\". In this paper, we explore certain interesting properties of possibilistic clustering, In particular, we show that possibilistic clustering can be successfully used to solve two important problems that arise while using fuzzy set theory: i) determination of membership functions, and ii) determination of the number of clusters.<<ETX>>\",\"PeriodicalId\":153967,\"journal\":{\"name\":\"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference\",\"volume\":\"71 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"86\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.1994.343851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1994.343851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 86

摘要

最近引入了可能性聚类,以克服模糊c均值算法中使用的约束所带来的一些限制。结果表明,可能性隶属关系更接近于“典型性”的概念。在本文中,我们探讨了可能性聚类的一些有趣的性质,特别是,我们证明了可能性聚类可以成功地用于解决在使用模糊集合理论时出现的两个重要问题:i)隶属函数的确定,ii)聚类数量的确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generation of membership functions via possibilistic clustering
Possibilistic clustering has been introduced recently to overcome some of the limitations imposed by the constraint used in the fuzzy c-means algorithm. It was shown that possibilistic memberships correspond more closely to the notion of "typicality". In this paper, we explore certain interesting properties of possibilistic clustering, In particular, we show that possibilistic clustering can be successfully used to solve two important problems that arise while using fuzzy set theory: i) determination of membership functions, and ii) determination of the number of clusters.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信