基于闭式压力平衡的柔性铰链设计

Robin F. P. Gomes
{"title":"基于闭式压力平衡的柔性铰链设计","authors":"Robin F. P. Gomes","doi":"10.1115/DETC2020-22100","DOIUrl":null,"url":null,"abstract":"\n Compliant mechanisms consist of a monolithic body and obtain motion through elastic deformation. Multiple compliant flexure designs are known but their translational to rotation stiffness ratio is often limited. This work introduces a novel compliant hinge design with increased stiffness ratio compared to the state of the art compliant hinges. The hinge functions by having an encapsulated fluid medium that contributes to high normal stiffness, but doesn’t influence the rotational stiffness. A 2D design model is presented that shows the effect of the geometry on the stiffness ratio performance. Subsequently, a computational 3D analysis is performed and the resulting design is realized as a demonstrator. The performance is compared to conventional compliant hinges based on the stiffness ratio. This shows an increase of at least a factor 30 on the stiffness ratio.","PeriodicalId":365283,"journal":{"name":"Volume 10: 44th Mechanisms and Robotics Conference (MR)","volume":"888 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design of a Compliant Hinge Based on Closed Form Pressure Balancing\",\"authors\":\"Robin F. P. Gomes\",\"doi\":\"10.1115/DETC2020-22100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Compliant mechanisms consist of a monolithic body and obtain motion through elastic deformation. Multiple compliant flexure designs are known but their translational to rotation stiffness ratio is often limited. This work introduces a novel compliant hinge design with increased stiffness ratio compared to the state of the art compliant hinges. The hinge functions by having an encapsulated fluid medium that contributes to high normal stiffness, but doesn’t influence the rotational stiffness. A 2D design model is presented that shows the effect of the geometry on the stiffness ratio performance. Subsequently, a computational 3D analysis is performed and the resulting design is realized as a demonstrator. The performance is compared to conventional compliant hinges based on the stiffness ratio. This shows an increase of at least a factor 30 on the stiffness ratio.\",\"PeriodicalId\":365283,\"journal\":{\"name\":\"Volume 10: 44th Mechanisms and Robotics Conference (MR)\",\"volume\":\"888 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 10: 44th Mechanisms and Robotics Conference (MR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/DETC2020-22100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: 44th Mechanisms and Robotics Conference (MR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DETC2020-22100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

柔性机构由一个整体组成,通过弹性变形获得运动。多种柔性设计是已知的,但它们的平移与旋转刚度比往往是有限的。这项工作介绍了一种新的柔性铰链设计,与现有的柔性铰链相比,它的刚度比增加了。铰链的功能是有一个封装流体介质,有助于高的法向刚度,但不影响旋转刚度。提出了一个二维设计模型,展示了几何形状对刚度比性能的影响。随后,进行了计算三维分析,并将结果设计作为验证实现。基于刚度比,与传统柔性铰链的性能进行了比较。这表明在刚度比上至少增加了30倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of a Compliant Hinge Based on Closed Form Pressure Balancing
Compliant mechanisms consist of a monolithic body and obtain motion through elastic deformation. Multiple compliant flexure designs are known but their translational to rotation stiffness ratio is often limited. This work introduces a novel compliant hinge design with increased stiffness ratio compared to the state of the art compliant hinges. The hinge functions by having an encapsulated fluid medium that contributes to high normal stiffness, but doesn’t influence the rotational stiffness. A 2D design model is presented that shows the effect of the geometry on the stiffness ratio performance. Subsequently, a computational 3D analysis is performed and the resulting design is realized as a demonstrator. The performance is compared to conventional compliant hinges based on the stiffness ratio. This shows an increase of at least a factor 30 on the stiffness ratio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信