{"title":"基于闭式压力平衡的柔性铰链设计","authors":"Robin F. P. Gomes","doi":"10.1115/DETC2020-22100","DOIUrl":null,"url":null,"abstract":"\n Compliant mechanisms consist of a monolithic body and obtain motion through elastic deformation. Multiple compliant flexure designs are known but their translational to rotation stiffness ratio is often limited. This work introduces a novel compliant hinge design with increased stiffness ratio compared to the state of the art compliant hinges. The hinge functions by having an encapsulated fluid medium that contributes to high normal stiffness, but doesn’t influence the rotational stiffness. A 2D design model is presented that shows the effect of the geometry on the stiffness ratio performance. Subsequently, a computational 3D analysis is performed and the resulting design is realized as a demonstrator. The performance is compared to conventional compliant hinges based on the stiffness ratio. This shows an increase of at least a factor 30 on the stiffness ratio.","PeriodicalId":365283,"journal":{"name":"Volume 10: 44th Mechanisms and Robotics Conference (MR)","volume":"888 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design of a Compliant Hinge Based on Closed Form Pressure Balancing\",\"authors\":\"Robin F. P. Gomes\",\"doi\":\"10.1115/DETC2020-22100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Compliant mechanisms consist of a monolithic body and obtain motion through elastic deformation. Multiple compliant flexure designs are known but their translational to rotation stiffness ratio is often limited. This work introduces a novel compliant hinge design with increased stiffness ratio compared to the state of the art compliant hinges. The hinge functions by having an encapsulated fluid medium that contributes to high normal stiffness, but doesn’t influence the rotational stiffness. A 2D design model is presented that shows the effect of the geometry on the stiffness ratio performance. Subsequently, a computational 3D analysis is performed and the resulting design is realized as a demonstrator. The performance is compared to conventional compliant hinges based on the stiffness ratio. This shows an increase of at least a factor 30 on the stiffness ratio.\",\"PeriodicalId\":365283,\"journal\":{\"name\":\"Volume 10: 44th Mechanisms and Robotics Conference (MR)\",\"volume\":\"888 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 10: 44th Mechanisms and Robotics Conference (MR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/DETC2020-22100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: 44th Mechanisms and Robotics Conference (MR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DETC2020-22100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design of a Compliant Hinge Based on Closed Form Pressure Balancing
Compliant mechanisms consist of a monolithic body and obtain motion through elastic deformation. Multiple compliant flexure designs are known but their translational to rotation stiffness ratio is often limited. This work introduces a novel compliant hinge design with increased stiffness ratio compared to the state of the art compliant hinges. The hinge functions by having an encapsulated fluid medium that contributes to high normal stiffness, but doesn’t influence the rotational stiffness. A 2D design model is presented that shows the effect of the geometry on the stiffness ratio performance. Subsequently, a computational 3D analysis is performed and the resulting design is realized as a demonstrator. The performance is compared to conventional compliant hinges based on the stiffness ratio. This shows an increase of at least a factor 30 on the stiffness ratio.