基于SVD-EEMD方法的高速微立铣削声发射监测

Yun Qi, Jinkai Xu, Zhanjiang Yu, Huadong Yu
{"title":"基于SVD-EEMD方法的高速微立铣削声发射监测","authors":"Yun Qi, Jinkai Xu, Zhanjiang Yu, Huadong Yu","doi":"10.1109/ROBIO.2017.8324573","DOIUrl":null,"url":null,"abstract":"In monitoring high-speed micro-milling, acoustic emission is used to explore the relationship between the machining parameters and the acoustic emission signal under different processing parameters. The acquired acoustic emission signal is denoised by singular value decomposition based on Hankel matrix, and the characteristic values of the denoising signal is calculated by ensemble empirical mode decomposition and the Hilbert-Huang transform. Results show that the characteristic values of the acoustic emission signal can represent the change in machining parameters, such as the spindle speed, and the acoustic emission signal is suitable for monitoring the micro-milling process.","PeriodicalId":197159,"journal":{"name":"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Acoustic emission monitoring in high-speed micro end-milling based on SVD-EEMD method\",\"authors\":\"Yun Qi, Jinkai Xu, Zhanjiang Yu, Huadong Yu\",\"doi\":\"10.1109/ROBIO.2017.8324573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In monitoring high-speed micro-milling, acoustic emission is used to explore the relationship between the machining parameters and the acoustic emission signal under different processing parameters. The acquired acoustic emission signal is denoised by singular value decomposition based on Hankel matrix, and the characteristic values of the denoising signal is calculated by ensemble empirical mode decomposition and the Hilbert-Huang transform. Results show that the characteristic values of the acoustic emission signal can represent the change in machining parameters, such as the spindle speed, and the acoustic emission signal is suitable for monitoring the micro-milling process.\",\"PeriodicalId\":197159,\"journal\":{\"name\":\"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBIO.2017.8324573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Robotics and Biomimetics (ROBIO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBIO.2017.8324573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在高速微铣削监测中,利用声发射技术研究不同加工参数下加工参数与声发射信号之间的关系。对采集到的声发射信号进行基于Hankel矩阵的奇异值分解去噪,利用集合经验模态分解和Hilbert-Huang变换计算去噪信号的特征值。结果表明,声发射信号的特征值可以表征主轴转速等加工参数的变化,声发射信号适用于微铣削过程的监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acoustic emission monitoring in high-speed micro end-milling based on SVD-EEMD method
In monitoring high-speed micro-milling, acoustic emission is used to explore the relationship between the machining parameters and the acoustic emission signal under different processing parameters. The acquired acoustic emission signal is denoised by singular value decomposition based on Hankel matrix, and the characteristic values of the denoising signal is calculated by ensemble empirical mode decomposition and the Hilbert-Huang transform. Results show that the characteristic values of the acoustic emission signal can represent the change in machining parameters, such as the spindle speed, and the acoustic emission signal is suitable for monitoring the micro-milling process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信