基于SURF的人脸图像性别识别系统

Bahar Hatipoglu, Cemal Kose
{"title":"基于SURF的人脸图像性别识别系统","authors":"Bahar Hatipoglu, Cemal Kose","doi":"10.1109/UBMK.2017.8093405","DOIUrl":null,"url":null,"abstract":"Gender recognition from facial images has become one of challenging research problem in computer vision, security, verbal-nonverbal communication and human computer interaction applications nowadays. Because facial images include many information such as gender, facial expressions, age, ethnic origin in computer-aided applications, the success rate of the gender recognition depends on quality of facial images. In this paper, it is proposed a new gender recognition method combining Speed Up Robust Features (SURF) based Bags of Visual Words (BoW) and Support Vector Machine (SVM) algorithm unlike previous work. The method is tested on realistic frontal, left and right face images from modern gender recognition FERET dataset with 3560 samples to see efficiency of the proposed method. Experimental results show that the proposed method can obtain better gender recognition performance on FERET database and the accuracy level of on left and right face images is a bit lower than the average accuracy level of frontal ones.","PeriodicalId":201903,"journal":{"name":"2017 International Conference on Computer Science and Engineering (UBMK)","volume":"27 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A gender recognition system from facial images using SURF based BoW method\",\"authors\":\"Bahar Hatipoglu, Cemal Kose\",\"doi\":\"10.1109/UBMK.2017.8093405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gender recognition from facial images has become one of challenging research problem in computer vision, security, verbal-nonverbal communication and human computer interaction applications nowadays. Because facial images include many information such as gender, facial expressions, age, ethnic origin in computer-aided applications, the success rate of the gender recognition depends on quality of facial images. In this paper, it is proposed a new gender recognition method combining Speed Up Robust Features (SURF) based Bags of Visual Words (BoW) and Support Vector Machine (SVM) algorithm unlike previous work. The method is tested on realistic frontal, left and right face images from modern gender recognition FERET dataset with 3560 samples to see efficiency of the proposed method. Experimental results show that the proposed method can obtain better gender recognition performance on FERET database and the accuracy level of on left and right face images is a bit lower than the average accuracy level of frontal ones.\",\"PeriodicalId\":201903,\"journal\":{\"name\":\"2017 International Conference on Computer Science and Engineering (UBMK)\",\"volume\":\"27 12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Computer Science and Engineering (UBMK)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UBMK.2017.8093405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computer Science and Engineering (UBMK)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UBMK.2017.8093405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

人脸图像的性别识别已成为当今计算机视觉、安全、语言-非语言交流和人机交互应用领域的一个具有挑战性的研究问题。由于在计算机辅助应用中,人脸图像包含了性别、面部表情、年龄、民族等信息,因此人脸图像的质量决定了性别识别的成功率。本文提出了一种基于加速鲁棒特征(SURF)的视觉词袋(BoW)和支持向量机(SVM)算法相结合的性别识别新方法。在现代性别识别FERET数据集中3560个样本的真实正面、左右人脸图像上进行了测试,验证了该方法的有效性。实验结果表明,该方法在FERET数据库上取得了较好的性别识别效果,左右脸图像的准确率略低于正面脸图像的平均准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A gender recognition system from facial images using SURF based BoW method
Gender recognition from facial images has become one of challenging research problem in computer vision, security, verbal-nonverbal communication and human computer interaction applications nowadays. Because facial images include many information such as gender, facial expressions, age, ethnic origin in computer-aided applications, the success rate of the gender recognition depends on quality of facial images. In this paper, it is proposed a new gender recognition method combining Speed Up Robust Features (SURF) based Bags of Visual Words (BoW) and Support Vector Machine (SVM) algorithm unlike previous work. The method is tested on realistic frontal, left and right face images from modern gender recognition FERET dataset with 3560 samples to see efficiency of the proposed method. Experimental results show that the proposed method can obtain better gender recognition performance on FERET database and the accuracy level of on left and right face images is a bit lower than the average accuracy level of frontal ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信