基于数据重构的多级标签传播算法

M. Zhang, Lei Zhang, Xia Sun, Shanshan Wang, Liang Li
{"title":"基于数据重构的多级标签传播算法","authors":"M. Zhang, Lei Zhang, Xia Sun, Shanshan Wang, Liang Li","doi":"10.1109/IHMSC.2013.109","DOIUrl":null,"url":null,"abstract":"Due to standard label propagation algorithm does not use the correct posterior probability of each iteration, and the propagation information of labeled data and unlabeled data are not distinguished during the label propagation process, this paper proposes a multi-level label propagation algorithm Based on data reconstruction. It adds the data which is correctly labeled for each iteration into the labeled data by the nearest neighbor rule Based data editing technique named Depuration, reconstructs the labeled data set, classifies the transition probability matrixes of both labeled and unlabeled data according to their importance. Experimental results show that the proposed algorithm is effective on the performance and convergence rate.","PeriodicalId":222375,"journal":{"name":"2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics","volume":"181 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-level Label Propagation Algorithm Based on Data Reconstruction\",\"authors\":\"M. Zhang, Lei Zhang, Xia Sun, Shanshan Wang, Liang Li\",\"doi\":\"10.1109/IHMSC.2013.109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to standard label propagation algorithm does not use the correct posterior probability of each iteration, and the propagation information of labeled data and unlabeled data are not distinguished during the label propagation process, this paper proposes a multi-level label propagation algorithm Based on data reconstruction. It adds the data which is correctly labeled for each iteration into the labeled data by the nearest neighbor rule Based data editing technique named Depuration, reconstructs the labeled data set, classifies the transition probability matrixes of both labeled and unlabeled data according to their importance. Experimental results show that the proposed algorithm is effective on the performance and convergence rate.\",\"PeriodicalId\":222375,\"journal\":{\"name\":\"2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"volume\":\"181 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IHMSC.2013.109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHMSC.2013.109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对标准标签传播算法未正确使用每次迭代的后验概率,以及标签传播过程中未区分有标签数据和未标记数据的传播信息等问题,本文提出了一种基于数据重构的多层次标签传播算法。它采用基于最近邻规则的数据编辑技术(Depuration),将每次迭代中正确标记的数据加入到标记好的数据中,重构标记好的数据集,并根据重要程度对标记数据和未标记数据的转移概率矩阵进行分类。实验结果表明,该算法在性能和收敛速度上都是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-level Label Propagation Algorithm Based on Data Reconstruction
Due to standard label propagation algorithm does not use the correct posterior probability of each iteration, and the propagation information of labeled data and unlabeled data are not distinguished during the label propagation process, this paper proposes a multi-level label propagation algorithm Based on data reconstruction. It adds the data which is correctly labeled for each iteration into the labeled data by the nearest neighbor rule Based data editing technique named Depuration, reconstructs the labeled data set, classifies the transition probability matrixes of both labeled and unlabeled data according to their importance. Experimental results show that the proposed algorithm is effective on the performance and convergence rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信