利用CNN对短文本进行COVID-19事件加重状态分类

Ekasari Nugraheni, P. Khotimah, Andria Arisal, A. Rozie, D. Riswantini, A. Purwarianti
{"title":"利用CNN对短文本进行COVID-19事件加重状态分类","authors":"Ekasari Nugraheni, P. Khotimah, Andria Arisal, A. Rozie, D. Riswantini, A. Purwarianti","doi":"10.1109/ICRAMET51080.2020.9298674","DOIUrl":null,"url":null,"abstract":"COVID-19 pandemic is a new precedent that has changed many aspects of human life. With the uncertainty of vaccine availability, stakeholders are required to track the dynamics of COVID-19 events to prepare the necessary response. One sub-task in tracking the dynamics of an event is to identify the aggravation status of the event (i.e., whether an event is worsening or getting better). We experimented with convolutional neural network (CNN) models to classify the status of COVID-19 aggravation status from a short text. CNN without one hot encoding prevailed. Furthermore, we conduct tuning to achieve better performance of CNN. The highest performance was achieved by tuning some of the configuration parameters. As the final result, the model performed at best (accuracy = 87.585% and F1-score = 76%) when using 80 nodes, SGD optimizer, lr = 0.1, and momentum = 0.9.","PeriodicalId":228482,"journal":{"name":"2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)","volume":"121 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Classifying aggravation status of COVID-19 event from short-text using CNN\",\"authors\":\"Ekasari Nugraheni, P. Khotimah, Andria Arisal, A. Rozie, D. Riswantini, A. Purwarianti\",\"doi\":\"10.1109/ICRAMET51080.2020.9298674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"COVID-19 pandemic is a new precedent that has changed many aspects of human life. With the uncertainty of vaccine availability, stakeholders are required to track the dynamics of COVID-19 events to prepare the necessary response. One sub-task in tracking the dynamics of an event is to identify the aggravation status of the event (i.e., whether an event is worsening or getting better). We experimented with convolutional neural network (CNN) models to classify the status of COVID-19 aggravation status from a short text. CNN without one hot encoding prevailed. Furthermore, we conduct tuning to achieve better performance of CNN. The highest performance was achieved by tuning some of the configuration parameters. As the final result, the model performed at best (accuracy = 87.585% and F1-score = 76%) when using 80 nodes, SGD optimizer, lr = 0.1, and momentum = 0.9.\",\"PeriodicalId\":228482,\"journal\":{\"name\":\"2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)\",\"volume\":\"121 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRAMET51080.2020.9298674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRAMET51080.2020.9298674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

COVID-19大流行是一个新的先例,改变了人类生活的许多方面。由于疫苗供应的不确定性,利益攸关方需要跟踪COVID-19事件的动态,以准备必要的应对措施。跟踪事件动态的一个子任务是确定事件的恶化状态(即,事件是恶化还是好转)。利用卷积神经网络(CNN)模型从短文本中对COVID-19加重状态进行分类。没有热编码的CNN占了上风。此外,我们对CNN进行了调优,以获得更好的性能。通过调优一些配置参数可以实现最高性能。作为最终结果,当使用80个节点,SGD优化器,lr = 0.1,动量= 0.9时,模型表现最佳(准确率= 87.585%,F1-score = 76%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classifying aggravation status of COVID-19 event from short-text using CNN
COVID-19 pandemic is a new precedent that has changed many aspects of human life. With the uncertainty of vaccine availability, stakeholders are required to track the dynamics of COVID-19 events to prepare the necessary response. One sub-task in tracking the dynamics of an event is to identify the aggravation status of the event (i.e., whether an event is worsening or getting better). We experimented with convolutional neural network (CNN) models to classify the status of COVID-19 aggravation status from a short text. CNN without one hot encoding prevailed. Furthermore, we conduct tuning to achieve better performance of CNN. The highest performance was achieved by tuning some of the configuration parameters. As the final result, the model performed at best (accuracy = 87.585% and F1-score = 76%) when using 80 nodes, SGD optimizer, lr = 0.1, and momentum = 0.9.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信