NDBI、NDISI和NDII在使用Landsat 8图像提取Dehradun [Uttarakhand, India]城市不透水地表的比较研究

A. Garg, Divyansu Pal, Hukum Singh, D. Pandey
{"title":"NDBI、NDISI和NDII在使用Landsat 8图像提取Dehradun [Uttarakhand, India]城市不透水地表的比较研究","authors":"A. Garg, Divyansu Pal, Hukum Singh, D. Pandey","doi":"10.1109/ETCT.2016.7882963","DOIUrl":null,"url":null,"abstract":"Estimating the impervious surface is important in monitoring the spread of urban areas and human activities. This paper compares three indices, namely, Normalized Difference Impervious Index (NDII), Normalized Difference Impervious Surface Index (NDISI) and Normalized Difference Built-up Index (NDBI) for impervious surface extraction. Landsat 8 (OLI/ TIRS) imagery and LISS III data were used to extract impervious surface of Dehradun, Uttrarakhand, India. The images were acquired on November, 2015 for Landsat 8 and March 2013 for LISS III. Because of cloud free atmospheric conditions, no Atmospheric Correction is done but Dark Object Subtraction and Radiometric Correction are some of the corrections done before pre-processing. Six end members, namely, impervious surface, barren land, agricultural land, water, mountains and forest were selected for Land Use Land Cover classification. Supervised Classification (SC) of Support Vector Machine (SVM) method is used to classify impervious surface and it was observed that the Green and Thermal IR band for NDII show the maximum accuracy. User's accuracy, Producer's accuracy and Kappa cofficient are calculated and compared for all above indices.","PeriodicalId":340007,"journal":{"name":"2016 International Conference on Emerging Trends in Communication Technologies (ETCT)","volume":"27 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A comparative study of NDBI, NDISI and NDII for extraction of urban impervious surface of Dehradun [Uttarakhand, India] using Landsat 8 imagery\",\"authors\":\"A. Garg, Divyansu Pal, Hukum Singh, D. Pandey\",\"doi\":\"10.1109/ETCT.2016.7882963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating the impervious surface is important in monitoring the spread of urban areas and human activities. This paper compares three indices, namely, Normalized Difference Impervious Index (NDII), Normalized Difference Impervious Surface Index (NDISI) and Normalized Difference Built-up Index (NDBI) for impervious surface extraction. Landsat 8 (OLI/ TIRS) imagery and LISS III data were used to extract impervious surface of Dehradun, Uttrarakhand, India. The images were acquired on November, 2015 for Landsat 8 and March 2013 for LISS III. Because of cloud free atmospheric conditions, no Atmospheric Correction is done but Dark Object Subtraction and Radiometric Correction are some of the corrections done before pre-processing. Six end members, namely, impervious surface, barren land, agricultural land, water, mountains and forest were selected for Land Use Land Cover classification. Supervised Classification (SC) of Support Vector Machine (SVM) method is used to classify impervious surface and it was observed that the Green and Thermal IR band for NDII show the maximum accuracy. User's accuracy, Producer's accuracy and Kappa cofficient are calculated and compared for all above indices.\",\"PeriodicalId\":340007,\"journal\":{\"name\":\"2016 International Conference on Emerging Trends in Communication Technologies (ETCT)\",\"volume\":\"27 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Emerging Trends in Communication Technologies (ETCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETCT.2016.7882963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Emerging Trends in Communication Technologies (ETCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETCT.2016.7882963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

估算不透水面对于监测城市区域的扩展和人类活动具有重要意义。本文比较了归一化差异不透水面指数(NDII)、归一化差异不透水面指数(NDISI)和归一化差异建筑指数(NDBI)三种不透水面提取方法。利用Landsat 8 (OLI/ TIRS)影像和LISS III数据对印度北阿坎德邦德拉敦不透水地表进行了提取。这些图像分别于2015年11月为Landsat 8和2013年3月为LISS III获取。由于无云的大气条件,不进行大气校正,但Dark Object Subtraction和Radiometric Correction是预处理前进行的一些校正。选取不透水地表、荒地、农地、水体、山地、森林6个末端成员进行土地利用土地覆盖分类。采用支持向量机(SVM)的监督分类(SC)方法对不透水面进行分类,结果表明,NDII的Green和Thermal IR波段精度最高。计算并比较了上述指标的用户精度、生产者精度和Kappa系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A comparative study of NDBI, NDISI and NDII for extraction of urban impervious surface of Dehradun [Uttarakhand, India] using Landsat 8 imagery
Estimating the impervious surface is important in monitoring the spread of urban areas and human activities. This paper compares three indices, namely, Normalized Difference Impervious Index (NDII), Normalized Difference Impervious Surface Index (NDISI) and Normalized Difference Built-up Index (NDBI) for impervious surface extraction. Landsat 8 (OLI/ TIRS) imagery and LISS III data were used to extract impervious surface of Dehradun, Uttrarakhand, India. The images were acquired on November, 2015 for Landsat 8 and March 2013 for LISS III. Because of cloud free atmospheric conditions, no Atmospheric Correction is done but Dark Object Subtraction and Radiometric Correction are some of the corrections done before pre-processing. Six end members, namely, impervious surface, barren land, agricultural land, water, mountains and forest were selected for Land Use Land Cover classification. Supervised Classification (SC) of Support Vector Machine (SVM) method is used to classify impervious surface and it was observed that the Green and Thermal IR band for NDII show the maximum accuracy. User's accuracy, Producer's accuracy and Kappa cofficient are calculated and compared for all above indices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信