类rsa系统代数结构的一些性质

Baodian Wei, Fangguo Zhang, Xiaofeng Chen, Haibo Tian
{"title":"类rsa系统代数结构的一些性质","authors":"Baodian Wei, Fangguo Zhang, Xiaofeng Chen, Haibo Tian","doi":"10.1109/WCSE.2009.249","DOIUrl":null,"url":null,"abstract":"The algebraic structure Z_n^* , with n being a product of safe primes, is widely used in RSA-like cryptosystems. We have investigated some properties of this kind of structure. Isomorphic structures are presented to represent elements of Z_n^* in a unique way. They also help to determine the form and the number of possible subgroups, to find, in a deterministic rather than probabilistic manner, the elements of any possible orders. The properties of quadratic and high degree residues are analyzed in detail, as well.","PeriodicalId":331155,"journal":{"name":"2009 WRI World Congress on Software Engineering","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Properties of Algebraic Structures of RSA-like Systems\",\"authors\":\"Baodian Wei, Fangguo Zhang, Xiaofeng Chen, Haibo Tian\",\"doi\":\"10.1109/WCSE.2009.249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The algebraic structure Z_n^* , with n being a product of safe primes, is widely used in RSA-like cryptosystems. We have investigated some properties of this kind of structure. Isomorphic structures are presented to represent elements of Z_n^* in a unique way. They also help to determine the form and the number of possible subgroups, to find, in a deterministic rather than probabilistic manner, the elements of any possible orders. The properties of quadratic and high degree residues are analyzed in detail, as well.\",\"PeriodicalId\":331155,\"journal\":{\"name\":\"2009 WRI World Congress on Software Engineering\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 WRI World Congress on Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCSE.2009.249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 WRI World Congress on Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCSE.2009.249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

代数结构Z_n^*被广泛应用于类rsa密码系统中,其中n是安全素数的乘积。我们研究了这种结构的一些性质。提出同构结构,以一种独特的方式表示Z_n^*的元素。它们还有助于确定可能的子群的形式和数量,以确定性而非概率的方式找到任何可能顺序的元素。并详细分析了二次残数和高次残数的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Properties of Algebraic Structures of RSA-like Systems
The algebraic structure Z_n^* , with n being a product of safe primes, is widely used in RSA-like cryptosystems. We have investigated some properties of this kind of structure. Isomorphic structures are presented to represent elements of Z_n^* in a unique way. They also help to determine the form and the number of possible subgroups, to find, in a deterministic rather than probabilistic manner, the elements of any possible orders. The properties of quadratic and high degree residues are analyzed in detail, as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信