变分区域生长中的形状优先

C. Revol-Muller, J. Rose, A. Pacureanu, F. Peyrin, C. Odet
{"title":"变分区域生长中的形状优先","authors":"C. Revol-Muller, J. Rose, A. Pacureanu, F. Peyrin, C. Odet","doi":"10.1109/IPTA.2012.6469571","DOIUrl":null,"url":null,"abstract":"In this paper, we propose two solutions to integrate shape prior in a segmentation process based on region growing. Our special region growing algorithm relies upon a variational framework which allows to easily take into account shape prior in the segmentation process. Region growing is described as an optimization process that aims to minimize some special energy combining intensity function and shape information. Two kinds of energy are proposed depending on the existence of a reference model or the possibility to assess some shape features at voxel level. We applied positively these two approaches in the context of life imaging in order to segment mice kidneys from small animal CT-images and lacuno-canicular network from experimental high resolution Synchrotron Radiation X-Ray Computed Tomography (SRμCT) images.","PeriodicalId":267290,"journal":{"name":"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Shape prior in Variational Region Growing\",\"authors\":\"C. Revol-Muller, J. Rose, A. Pacureanu, F. Peyrin, C. Odet\",\"doi\":\"10.1109/IPTA.2012.6469571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose two solutions to integrate shape prior in a segmentation process based on region growing. Our special region growing algorithm relies upon a variational framework which allows to easily take into account shape prior in the segmentation process. Region growing is described as an optimization process that aims to minimize some special energy combining intensity function and shape information. Two kinds of energy are proposed depending on the existence of a reference model or the possibility to assess some shape features at voxel level. We applied positively these two approaches in the context of life imaging in order to segment mice kidneys from small animal CT-images and lacuno-canicular network from experimental high resolution Synchrotron Radiation X-Ray Computed Tomography (SRμCT) images.\",\"PeriodicalId\":267290,\"journal\":{\"name\":\"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"138 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2012.6469571\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2012.6469571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了两种基于区域增长的分割过程中形状先验融合的解决方案。我们的特殊区域增长算法依赖于一个变分框架,它允许在分割过程中很容易地考虑形状。区域生长被描述为结合强度函数和形状信息,以最小化某些特殊能量为目标的优化过程。根据参考模型的存在或在体素水平上评估某些形状特征的可能性,提出了两种能量。我们在生命成像的背景下积极应用这两种方法,以便从小动物ct图像中分割小鼠肾脏,从实验高分辨率同步辐射x射线计算机断层扫描(SRμCT)图像中分割腔隙-小管网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shape prior in Variational Region Growing
In this paper, we propose two solutions to integrate shape prior in a segmentation process based on region growing. Our special region growing algorithm relies upon a variational framework which allows to easily take into account shape prior in the segmentation process. Region growing is described as an optimization process that aims to minimize some special energy combining intensity function and shape information. Two kinds of energy are proposed depending on the existence of a reference model or the possibility to assess some shape features at voxel level. We applied positively these two approaches in the context of life imaging in order to segment mice kidneys from small animal CT-images and lacuno-canicular network from experimental high resolution Synchrotron Radiation X-Ray Computed Tomography (SRμCT) images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信