{"title":"一种用于植入式深部脑刺激的高效无线能量传输系统","authors":"S. Cetin, Veli Yenil, U. Dere","doi":"10.1109/AE54730.2022.9920100","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient wireless power transfer (WPT) system for implantable deep brain stimulation (DBS) devices. A head-mounted DBS device is taken into account in the design procedure of the presented WPT system. A three coil system is designed to provide high efficiency power transfer. The LCC compensation network which has constant voltage characteristic is used in the transmitter side and two receiver coils using series compensation are located in the receiver side, into the human tissue. Finally, performance of the proposed WPT system is tested by a 3D electromagnetic simulation work at a 10 mm distance. Based on the simulation results, 1.19 V DC output voltage is regulated while the DC output current is 24 mA. The power transfer efficiency is achieved as 4.63% at full load condition.","PeriodicalId":113076,"journal":{"name":"2022 International Conference on Applied Electronics (AE)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Efficient Wireless Power Transfer System for An Implantable Deep Brain Stimulation\",\"authors\":\"S. Cetin, Veli Yenil, U. Dere\",\"doi\":\"10.1109/AE54730.2022.9920100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an efficient wireless power transfer (WPT) system for implantable deep brain stimulation (DBS) devices. A head-mounted DBS device is taken into account in the design procedure of the presented WPT system. A three coil system is designed to provide high efficiency power transfer. The LCC compensation network which has constant voltage characteristic is used in the transmitter side and two receiver coils using series compensation are located in the receiver side, into the human tissue. Finally, performance of the proposed WPT system is tested by a 3D electromagnetic simulation work at a 10 mm distance. Based on the simulation results, 1.19 V DC output voltage is regulated while the DC output current is 24 mA. The power transfer efficiency is achieved as 4.63% at full load condition.\",\"PeriodicalId\":113076,\"journal\":{\"name\":\"2022 International Conference on Applied Electronics (AE)\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Applied Electronics (AE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AE54730.2022.9920100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Applied Electronics (AE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AE54730.2022.9920100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Efficient Wireless Power Transfer System for An Implantable Deep Brain Stimulation
This paper presents an efficient wireless power transfer (WPT) system for implantable deep brain stimulation (DBS) devices. A head-mounted DBS device is taken into account in the design procedure of the presented WPT system. A three coil system is designed to provide high efficiency power transfer. The LCC compensation network which has constant voltage characteristic is used in the transmitter side and two receiver coils using series compensation are located in the receiver side, into the human tissue. Finally, performance of the proposed WPT system is tested by a 3D electromagnetic simulation work at a 10 mm distance. Based on the simulation results, 1.19 V DC output voltage is regulated while the DC output current is 24 mA. The power transfer efficiency is achieved as 4.63% at full load condition.