使用输入输出隐马尔可夫模型的手势识别

S. Marcel, O. Bernier, J. Viallet, D. Collobert
{"title":"使用输入输出隐马尔可夫模型的手势识别","authors":"S. Marcel, O. Bernier, J. Viallet, D. Collobert","doi":"10.1109/AFGR.2000.840674","DOIUrl":null,"url":null,"abstract":"A new hand gesture recognition method based on input-output hidden Markov models is presented. This method deals with the dynamic aspects of gestures. Gestures are extracted from a sequence of video images by tracking the skin-color blobs corresponding to the hand into a body-face space centered on the face of the user. Our goal is to recognize two classes of gestures: deictic and symbolic.","PeriodicalId":360065,"journal":{"name":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","volume":"139 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"148","resultStr":"{\"title\":\"Hand gesture recognition using input-output hidden Markov models\",\"authors\":\"S. Marcel, O. Bernier, J. Viallet, D. Collobert\",\"doi\":\"10.1109/AFGR.2000.840674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new hand gesture recognition method based on input-output hidden Markov models is presented. This method deals with the dynamic aspects of gestures. Gestures are extracted from a sequence of video images by tracking the skin-color blobs corresponding to the hand into a body-face space centered on the face of the user. Our goal is to recognize two classes of gestures: deictic and symbolic.\",\"PeriodicalId\":360065,\"journal\":{\"name\":\"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)\",\"volume\":\"139 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"148\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AFGR.2000.840674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AFGR.2000.840674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 148

摘要

提出了一种基于输入输出隐马尔可夫模型的手势识别方法。这种方法处理手势的动态方面。手势是从一系列视频图像中提取出来的,通过跟踪与手相对应的肤色斑点到以用户面部为中心的身体-面部空间。我们的目标是识别两类手势:指示和象征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hand gesture recognition using input-output hidden Markov models
A new hand gesture recognition method based on input-output hidden Markov models is presented. This method deals with the dynamic aspects of gestures. Gestures are extracted from a sequence of video images by tracking the skin-color blobs corresponding to the hand into a body-face space centered on the face of the user. Our goal is to recognize two classes of gestures: deictic and symbolic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信