使用用户位置在交付地址中发现POI别名

Tianfu He, Guochun Chen, Chuishi Meng, Huajun He, Zheyi Pan, Yexin Li, Sijie Ruan, Huimin Ren, Ye Yuan, Ruiyuan Li, Junbo Zhang, Jie Bao, Hui He, Yu Zheng
{"title":"使用用户位置在交付地址中发现POI别名","authors":"Tianfu He, Guochun Chen, Chuishi Meng, Huajun He, Zheyi Pan, Yexin Li, Sijie Ruan, Huimin Ren, Ye Yuan, Ruiyuan Li, Junbo Zhang, Jie Bao, Hui He, Yu Zheng","doi":"10.1145/3474717.3483950","DOIUrl":null,"url":null,"abstract":"People often refer to a place of interest (POI) by an alias. In ecommerce scenarios, the POI alias problem affects the quality of the delivery address of online orders, bringing substantial challenges to intelligent logistics systems and market decision-making. Labeling the aliases of POIs involves heavy human labor, which is inefficient and expensive. Inspired by the observation that the users' GPS locations are highly related to their delivery address, we propose a ubiquitous alias discovery framework. Firstly, for each POI name in delivery addresses, the location data of its associated users, namely Mobility Profile are extracted. Then, we identify the alias relationship by modeling the similarity of mobility profiles. Comprehensive experiments on the large-scale location data and delivery address data from JD logistics validate the effectiveness.","PeriodicalId":340759,"journal":{"name":"Proceedings of the 29th International Conference on Advances in Geographic Information Systems","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"POI Alias Discovery in Delivery Addresses using User Locations\",\"authors\":\"Tianfu He, Guochun Chen, Chuishi Meng, Huajun He, Zheyi Pan, Yexin Li, Sijie Ruan, Huimin Ren, Ye Yuan, Ruiyuan Li, Junbo Zhang, Jie Bao, Hui He, Yu Zheng\",\"doi\":\"10.1145/3474717.3483950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"People often refer to a place of interest (POI) by an alias. In ecommerce scenarios, the POI alias problem affects the quality of the delivery address of online orders, bringing substantial challenges to intelligent logistics systems and market decision-making. Labeling the aliases of POIs involves heavy human labor, which is inefficient and expensive. Inspired by the observation that the users' GPS locations are highly related to their delivery address, we propose a ubiquitous alias discovery framework. Firstly, for each POI name in delivery addresses, the location data of its associated users, namely Mobility Profile are extracted. Then, we identify the alias relationship by modeling the similarity of mobility profiles. Comprehensive experiments on the large-scale location data and delivery address data from JD logistics validate the effectiveness.\",\"PeriodicalId\":340759,\"journal\":{\"name\":\"Proceedings of the 29th International Conference on Advances in Geographic Information Systems\",\"volume\":\"109 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3474717.3483950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3474717.3483950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

人们经常用别名来指代名胜古迹。在电子商务场景中,POI别名问题影响了在线订单交付地址的质量,给智能物流系统和市场决策带来了重大挑战。标记poi的别名涉及大量人力劳动,效率低且成本高。由于用户的GPS位置与其送货地址高度相关,我们提出了一个无处不在的别名发现框架。首先,对配送地址中的每个POI名称提取其关联用户的位置数据,即Mobility Profile;然后,通过对移动轮廓相似度的建模来识别别名关系。对京东物流的大规模定位数据和送货地址数据进行综合实验,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
POI Alias Discovery in Delivery Addresses using User Locations
People often refer to a place of interest (POI) by an alias. In ecommerce scenarios, the POI alias problem affects the quality of the delivery address of online orders, bringing substantial challenges to intelligent logistics systems and market decision-making. Labeling the aliases of POIs involves heavy human labor, which is inefficient and expensive. Inspired by the observation that the users' GPS locations are highly related to their delivery address, we propose a ubiquitous alias discovery framework. Firstly, for each POI name in delivery addresses, the location data of its associated users, namely Mobility Profile are extracted. Then, we identify the alias relationship by modeling the similarity of mobility profiles. Comprehensive experiments on the large-scale location data and delivery address data from JD logistics validate the effectiveness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信