自动化高效的ram模型安全计算

Chang Liu, Yan Huang, E. Shi, Jonathan Katz, M. Hicks
{"title":"自动化高效的ram模型安全计算","authors":"Chang Liu, Yan Huang, E. Shi, Jonathan Katz, M. Hicks","doi":"10.1109/SP.2014.46","DOIUrl":null,"url":null,"abstract":"RAM-model secure computation addresses the inherent limitations of circuit-model secure computation considered in almost all previous work. Here, we describe the first automated approach for RAM-model secure computation in the semi-honest model. We define an intermediate representation called SCVM and a corresponding type system suited for RAM-model secure computation. Leveraging compile-time optimizations, our approach achieves order-of-magnitude speedups compared to both circuit-model secure computation and the state-of-art RAM-model secure computation.","PeriodicalId":196038,"journal":{"name":"2014 IEEE Symposium on Security and Privacy","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"106","resultStr":"{\"title\":\"Automating Efficient RAM-Model Secure Computation\",\"authors\":\"Chang Liu, Yan Huang, E. Shi, Jonathan Katz, M. Hicks\",\"doi\":\"10.1109/SP.2014.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"RAM-model secure computation addresses the inherent limitations of circuit-model secure computation considered in almost all previous work. Here, we describe the first automated approach for RAM-model secure computation in the semi-honest model. We define an intermediate representation called SCVM and a corresponding type system suited for RAM-model secure computation. Leveraging compile-time optimizations, our approach achieves order-of-magnitude speedups compared to both circuit-model secure computation and the state-of-art RAM-model secure computation.\",\"PeriodicalId\":196038,\"journal\":{\"name\":\"2014 IEEE Symposium on Security and Privacy\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"106\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Security and Privacy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SP.2014.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Security and Privacy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP.2014.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 106

摘要

ram模型安全计算解决了电路模型安全计算的固有局限性。在这里,我们描述了半诚实模型中ram模型安全计算的第一种自动化方法。我们定义了一个称为SCVM的中间表示和一个适合于ram模型安全计算的相应类型系统。利用编译时优化,与电路模型安全计算和最先进的ram模型安全计算相比,我们的方法实现了数量级的速度提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automating Efficient RAM-Model Secure Computation
RAM-model secure computation addresses the inherent limitations of circuit-model secure computation considered in almost all previous work. Here, we describe the first automated approach for RAM-model secure computation in the semi-honest model. We define an intermediate representation called SCVM and a corresponding type system suited for RAM-model secure computation. Leveraging compile-time optimizations, our approach achieves order-of-magnitude speedups compared to both circuit-model secure computation and the state-of-art RAM-model secure computation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信