智能电网中基于签名的物联网入侵检测的机器学习架构

N. Yadav, Laura M. Truong, Erald Troja, Mehrdad Aliasgari
{"title":"智能电网中基于签名的物联网入侵检测的机器学习架构","authors":"N. Yadav, Laura M. Truong, Erald Troja, Mehrdad Aliasgari","doi":"10.1109/MELECON53508.2022.9843007","DOIUrl":null,"url":null,"abstract":"Security vulnerabilities of IoT (Internet of Things) enabled smart grid energy systems is a major concern. Contemporary mitigating frameworks incorporate Network Intrusion Detection Systems (NIDS) and Network Intrusion Prevention Systems (NIPS) whose architecture branches on either signature-based or anomaly-based detection. Signature-based systems offer higher detection rates; however they require tedious manual work to set up signature rules, and are incapable of learning through network traffic - missing out on attacks whose signature is unknown. Alternatively, anomaly-based systems are capable of mitigating the shortcomings of signature-based systems but suffer from high false-positive rates. In this paper, we propose an automated machine learning architecture for IoT-enabled smart energy grids capable of deciding whether to generate rules for signature-based systems. Results are presented using an IoT dataset comprising MITM (man in the middle) attacks, indicating the potential of this framework for intelligent threat mitigation in smart energy infrastructures.","PeriodicalId":303656,"journal":{"name":"2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON)","volume":"317 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Machine Learning Architecture for Signature-based IoT Intrusion Detection in Smart Energy Grids\",\"authors\":\"N. Yadav, Laura M. Truong, Erald Troja, Mehrdad Aliasgari\",\"doi\":\"10.1109/MELECON53508.2022.9843007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Security vulnerabilities of IoT (Internet of Things) enabled smart grid energy systems is a major concern. Contemporary mitigating frameworks incorporate Network Intrusion Detection Systems (NIDS) and Network Intrusion Prevention Systems (NIPS) whose architecture branches on either signature-based or anomaly-based detection. Signature-based systems offer higher detection rates; however they require tedious manual work to set up signature rules, and are incapable of learning through network traffic - missing out on attacks whose signature is unknown. Alternatively, anomaly-based systems are capable of mitigating the shortcomings of signature-based systems but suffer from high false-positive rates. In this paper, we propose an automated machine learning architecture for IoT-enabled smart energy grids capable of deciding whether to generate rules for signature-based systems. Results are presented using an IoT dataset comprising MITM (man in the middle) attacks, indicating the potential of this framework for intelligent threat mitigation in smart energy infrastructures.\",\"PeriodicalId\":303656,\"journal\":{\"name\":\"2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON)\",\"volume\":\"317 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MELECON53508.2022.9843007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 21st Mediterranean Electrotechnical Conference (MELECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MELECON53508.2022.9843007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

支持物联网的智能电网能源系统的安全漏洞是一个主要问题。当前的缓解框架包括网络入侵检测系统(NIDS)和网络入侵防御系统(NIPS),其架构分支基于签名或基于异常的检测。基于签名的系统提供更高的检测率;然而,他们需要繁琐的手工工作来建立签名规则,并且无法通过网络流量进行学习-错过了签名未知的攻击。另外,基于异常的系统能够减轻基于签名的系统的缺点,但存在高误报率。在本文中,我们为支持物联网的智能电网提出了一种自动化机器学习架构,该架构能够决定是否为基于签名的系统生成规则。结果使用包含MITM(中间人)攻击的物联网数据集呈现,表明该框架在智能能源基础设施中智能威胁缓解的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Architecture for Signature-based IoT Intrusion Detection in Smart Energy Grids
Security vulnerabilities of IoT (Internet of Things) enabled smart grid energy systems is a major concern. Contemporary mitigating frameworks incorporate Network Intrusion Detection Systems (NIDS) and Network Intrusion Prevention Systems (NIPS) whose architecture branches on either signature-based or anomaly-based detection. Signature-based systems offer higher detection rates; however they require tedious manual work to set up signature rules, and are incapable of learning through network traffic - missing out on attacks whose signature is unknown. Alternatively, anomaly-based systems are capable of mitigating the shortcomings of signature-based systems but suffer from high false-positive rates. In this paper, we propose an automated machine learning architecture for IoT-enabled smart energy grids capable of deciding whether to generate rules for signature-based systems. Results are presented using an IoT dataset comprising MITM (man in the middle) attacks, indicating the potential of this framework for intelligent threat mitigation in smart energy infrastructures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信