{"title":"植物病害进化的Gompertz模糊模型","authors":"N. Clara, X. Bertran","doi":"10.1109/FUZZ-IEEE.2017.8015399","DOIUrl":null,"url":null,"abstract":"Plant disease experimental data have been shown to fit better with a crisp Gompertz model rather than a logistic model. A fuzzy approach based on Zadeh's Extension Principle, which leads to four systems of two parameter dependent autonomous differential equations, is applied to this subject. The solution is monitored from the initial fuzzy conditions through to the three different domains and two sub-domains. While results show properties of the crisp Gompertz model being kept and then lost, this is still an appropriate generalized way to deal with uncertainty in plant disease evolution.","PeriodicalId":408343,"journal":{"name":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gompertz fuzzy model for plant disease evolution\",\"authors\":\"N. Clara, X. Bertran\",\"doi\":\"10.1109/FUZZ-IEEE.2017.8015399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plant disease experimental data have been shown to fit better with a crisp Gompertz model rather than a logistic model. A fuzzy approach based on Zadeh's Extension Principle, which leads to four systems of two parameter dependent autonomous differential equations, is applied to this subject. The solution is monitored from the initial fuzzy conditions through to the three different domains and two sub-domains. While results show properties of the crisp Gompertz model being kept and then lost, this is still an appropriate generalized way to deal with uncertainty in plant disease evolution.\",\"PeriodicalId\":408343,\"journal\":{\"name\":\"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ-IEEE.2017.8015399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2017.8015399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Plant disease experimental data have been shown to fit better with a crisp Gompertz model rather than a logistic model. A fuzzy approach based on Zadeh's Extension Principle, which leads to four systems of two parameter dependent autonomous differential equations, is applied to this subject. The solution is monitored from the initial fuzzy conditions through to the three different domains and two sub-domains. While results show properties of the crisp Gompertz model being kept and then lost, this is still an appropriate generalized way to deal with uncertainty in plant disease evolution.