基于模糊等价和末端滑模的机械臂轨迹跟踪控制

Youyu Liu, Yi Li, Xuyou Zhang, Bo Chen
{"title":"基于模糊等价和末端滑模的机械臂轨迹跟踪控制","authors":"Youyu Liu, Yi Li, Xuyou Zhang, Bo Chen","doi":"10.5545/sv-jme.2021.7220","DOIUrl":null,"url":null,"abstract":"To suppress the chattering of manipulators under heavy-load operations, a control method called fuzzy equivalence & terminal sliding mode (FETSM) was applied to the trajectory tracking of motion curves for manipulators. Based on the switching term of the equivalent sliding mode (ESM), a fuzzy parameter matrix processed by the simple fuzzy rules was introduced, and the fuzzy switching term was obtained. By summing the fuzzy switching term and the equivalent term of the equivalence and a terminal sliding mode (ETSM), the control law of the FETSM for manipulators was obtained. On this basis, the stability of the system was analysed and the finite arrival time of it was deduced. On the premise of ensuring the stability of the system, the fuzzy rules and membership functions were designed for the fuzzy constants in the fuzzy switching term. Simulation tests show that the proposed FETSM can ensure sufficient trajectory-tracking precision, error convergence speed, and robustness. Compared with the ETSM, the proposed FETSM can reduce the chattering time by 94.75 % on average; compared with the proportion-integral-differential (PID) control method, the maximum chattering amplitude by the FETSM can be reduced by at least 99.21 %. Thus, the proposed FETSM is suitable for those manipulators under heavy-load operations.","PeriodicalId":135907,"journal":{"name":"Strojniški vestnik – Journal of Mechanical Engineering","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Trajectory-Tracking Control for Manipulators Based on Fuzzy Equivalence and a Terminal Sliding Mode\",\"authors\":\"Youyu Liu, Yi Li, Xuyou Zhang, Bo Chen\",\"doi\":\"10.5545/sv-jme.2021.7220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To suppress the chattering of manipulators under heavy-load operations, a control method called fuzzy equivalence & terminal sliding mode (FETSM) was applied to the trajectory tracking of motion curves for manipulators. Based on the switching term of the equivalent sliding mode (ESM), a fuzzy parameter matrix processed by the simple fuzzy rules was introduced, and the fuzzy switching term was obtained. By summing the fuzzy switching term and the equivalent term of the equivalence and a terminal sliding mode (ETSM), the control law of the FETSM for manipulators was obtained. On this basis, the stability of the system was analysed and the finite arrival time of it was deduced. On the premise of ensuring the stability of the system, the fuzzy rules and membership functions were designed for the fuzzy constants in the fuzzy switching term. Simulation tests show that the proposed FETSM can ensure sufficient trajectory-tracking precision, error convergence speed, and robustness. Compared with the ETSM, the proposed FETSM can reduce the chattering time by 94.75 % on average; compared with the proportion-integral-differential (PID) control method, the maximum chattering amplitude by the FETSM can be reduced by at least 99.21 %. Thus, the proposed FETSM is suitable for those manipulators under heavy-load operations.\",\"PeriodicalId\":135907,\"journal\":{\"name\":\"Strojniški vestnik – Journal of Mechanical Engineering\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strojniški vestnik – Journal of Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5545/sv-jme.2021.7220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strojniški vestnik – Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5545/sv-jme.2021.7220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为抑制机械臂在重载工况下的抖振,将模糊等效终端滑模控制方法应用于机械臂运动曲线的轨迹跟踪。在等效滑模切换项的基础上,引入了由简单模糊规则处理的模糊参数矩阵,得到了模糊切换项。通过将模糊切换项、等效项和终端滑模(ETSM)的等效项相加,得到了机器人FETSM的控制规律。在此基础上,分析了系统的稳定性,推导了系统的有限到达时间。在保证系统稳定性的前提下,对模糊切换项中的模糊常数设计了模糊规则和隶属函数。仿真实验表明,该方法能够保证足够的轨迹跟踪精度、误差收敛速度和鲁棒性。与ETSM相比,所提出的FETSM可将抖振时间平均减少94.75%;与比例-积分-微分(PID)控制相比,FETSM控制的最大抖振幅值至少降低了99.21%。因此,该方法适用于机械臂的重载作业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trajectory-Tracking Control for Manipulators Based on Fuzzy Equivalence and a Terminal Sliding Mode
To suppress the chattering of manipulators under heavy-load operations, a control method called fuzzy equivalence & terminal sliding mode (FETSM) was applied to the trajectory tracking of motion curves for manipulators. Based on the switching term of the equivalent sliding mode (ESM), a fuzzy parameter matrix processed by the simple fuzzy rules was introduced, and the fuzzy switching term was obtained. By summing the fuzzy switching term and the equivalent term of the equivalence and a terminal sliding mode (ETSM), the control law of the FETSM for manipulators was obtained. On this basis, the stability of the system was analysed and the finite arrival time of it was deduced. On the premise of ensuring the stability of the system, the fuzzy rules and membership functions were designed for the fuzzy constants in the fuzzy switching term. Simulation tests show that the proposed FETSM can ensure sufficient trajectory-tracking precision, error convergence speed, and robustness. Compared with the ETSM, the proposed FETSM can reduce the chattering time by 94.75 % on average; compared with the proportion-integral-differential (PID) control method, the maximum chattering amplitude by the FETSM can be reduced by at least 99.21 %. Thus, the proposed FETSM is suitable for those manipulators under heavy-load operations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信