基于功能和结构MRI的阿尔茨海默病的分类和诊断

B. Zhu, Qi Li, Chunjie Guo, Yu Yang
{"title":"基于功能和结构MRI的阿尔茨海默病的分类和诊断","authors":"B. Zhu, Qi Li, Chunjie Guo, Yu Yang","doi":"10.1109/AINIT59027.2023.10212973","DOIUrl":null,"url":null,"abstract":"Alzheimer's disease (AD) is a common neurodegenerative disease, and early diagnosis of AD is crucial for timely intervention and treatment. This study combined clinical neuropsychological examinations, functional Magnetic Resonance Imaging local brain network properties, structural Magnetic Resonance Imaging gray matter, white matter and cerebrospinal fluid volume values to analyze the features with significant differences among the AD group, mild cognitive impairment group, and normal controls. Using the support vector machine model, a three-class classification was performed on all significantly different features, achieving an accuracy of 85.29%. The feature selection method of multimodal data in this study provides valuable assistance for classification and diagnosis.","PeriodicalId":276778,"journal":{"name":"2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification and Diagnosis of Alzheimer's Disease Based on Functional and Structural MRI\",\"authors\":\"B. Zhu, Qi Li, Chunjie Guo, Yu Yang\",\"doi\":\"10.1109/AINIT59027.2023.10212973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alzheimer's disease (AD) is a common neurodegenerative disease, and early diagnosis of AD is crucial for timely intervention and treatment. This study combined clinical neuropsychological examinations, functional Magnetic Resonance Imaging local brain network properties, structural Magnetic Resonance Imaging gray matter, white matter and cerebrospinal fluid volume values to analyze the features with significant differences among the AD group, mild cognitive impairment group, and normal controls. Using the support vector machine model, a three-class classification was performed on all significantly different features, achieving an accuracy of 85.29%. The feature selection method of multimodal data in this study provides valuable assistance for classification and diagnosis.\",\"PeriodicalId\":276778,\"journal\":{\"name\":\"2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)\",\"volume\":\"196 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AINIT59027.2023.10212973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AINIT59027.2023.10212973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

阿尔茨海默病(Alzheimer's disease, AD)是一种常见的神经退行性疾病,早期诊断对及时干预和治疗至关重要。本研究结合临床神经心理学检查、功能性磁共振局部脑网络特性、结构磁共振灰质、白质和脑脊液容积值分析AD组、轻度认知障碍组和正常对照组之间存在显著差异的特征。使用支持向量机模型对所有显著不同的特征进行三类分类,准确率达到85.29%。本研究中多模态数据的特征选择方法为分类和诊断提供了有价值的帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification and Diagnosis of Alzheimer's Disease Based on Functional and Structural MRI
Alzheimer's disease (AD) is a common neurodegenerative disease, and early diagnosis of AD is crucial for timely intervention and treatment. This study combined clinical neuropsychological examinations, functional Magnetic Resonance Imaging local brain network properties, structural Magnetic Resonance Imaging gray matter, white matter and cerebrospinal fluid volume values to analyze the features with significant differences among the AD group, mild cognitive impairment group, and normal controls. Using the support vector machine model, a three-class classification was performed on all significantly different features, achieving an accuracy of 85.29%. The feature selection method of multimodal data in this study provides valuable assistance for classification and diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信